|
| 1 | +/* |
| 2 | +* @license Apache-2.0 |
| 3 | +* |
| 4 | +* Copyright (c) 2024 The Stdlib Authors. |
| 5 | +* |
| 6 | +* Licensed under the Apache License, Version 2.0 (the "License"); |
| 7 | +* you may not use this file except in compliance with the License. |
| 8 | +* You may obtain a copy of the License at |
| 9 | +* |
| 10 | +* http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | +* |
| 12 | +* Unless required by applicable law or agreed to in writing, software |
| 13 | +* distributed under the License is distributed on an "AS IS" BASIS, |
| 14 | +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 15 | +* See the License for the specific language governing permissions and |
| 16 | +* limitations under the License. |
| 17 | +*/ |
| 18 | + |
| 19 | +// TypeScript Version: 4.1 |
| 20 | + |
| 21 | +/** |
| 22 | +* Interface describing `dlanv2`. |
| 23 | +*/ |
| 24 | +interface Routine { |
| 25 | + /** |
| 26 | + * Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix `A` in standard form. |
| 27 | + * |
| 28 | + * Given a real 2×2 matrix: |
| 29 | + * |
| 30 | + * ```tex |
| 31 | + * \begin{bmatrix} |
| 32 | + * A & B \\ |
| 33 | + * C & D |
| 34 | + * \end{bmatrix} |
| 35 | + * ``` |
| 36 | + * |
| 37 | + * this routine computes an orthogonal matrix: |
| 38 | + * |
| 39 | + * ```tex |
| 40 | + * \begin{bmatrix} |
| 41 | + * \text{CS} & \text{SN} \\ |
| 42 | + * -\text{SN} & \text{CS} |
| 43 | + * \end{bmatrix} |
| 44 | + * ``` |
| 45 | + * |
| 46 | + * such that the matrix is reduced to Schur (quasi-triangular) form: |
| 47 | + * |
| 48 | + * ```tex |
| 49 | + * \begin{bmatrix} |
| 50 | + * \text{AA} & \text{BB} \\ |
| 51 | + * 0 & \text{DD} |
| 52 | + * \end{bmatrix} |
| 53 | + * ``` |
| 54 | + * |
| 55 | + * @param A - array containing the element A(1,1) |
| 56 | + * @param B - array containing the element A(1,2) |
| 57 | + * @param C - array containing the element A(2,1) |
| 58 | + * @param D - array containing the element A(2,2) |
| 59 | + * @param RT1R - output array for the real part of the first eigenvalue |
| 60 | + * @param RT1I - output array for the imaginary part of the first eigenvalue |
| 61 | + * @param RT2R - output array for the real part of the second eigenvalue |
| 62 | + * @param RT2I - output array for the imaginary part of the second eigenvalue |
| 63 | + * @param CS - output array for cosine of the rotation |
| 64 | + * @param SN - output array for sine of the rotation |
| 65 | + * |
| 66 | + * @example |
| 67 | + * var Float64Array = require( '@stdlib/array/float64' ); |
| 68 | + * |
| 69 | + * var A = new Float64Array( [ 4.0 ] ); |
| 70 | + * var B = new Float64Array( [ -5.0 ] ); |
| 71 | + * var C = new Float64Array( [ 2.0 ] ); |
| 72 | + * var D = new Float64Array( [ -3.0 ] ); |
| 73 | + * var RT1R = new Float64Array( 1 ); |
| 74 | + * var RT1I = new Float64Array( 1 ); |
| 75 | + * var RT2R = new Float64Array( 1 ); |
| 76 | + * var RT2I = new Float64Array( 1 ); |
| 77 | + * var CS = new Float64Array( 1 ); |
| 78 | + * var SN = new Float64Array( 1 ); |
| 79 | + * |
| 80 | + * dlanv2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN ); |
| 81 | + * // A => <Float64Array>[ 2.0 ] |
| 82 | + * // B => <Float64Array>[ -7.0 ] |
| 83 | + * // C => <Float64Array>[ 0.0 ] |
| 84 | + * // D => <Float64Array>[ -1.0 ] |
| 85 | + * // RT1R => <Float64Array>[ 2.0 ] |
| 86 | + * // RT1I => <Float64Array>[ 0.0 ] |
| 87 | + * // RT2R => <Float64Array>[ -1.0 ] |
| 88 | + * // RT2I => <Float64Array>[ 0.0 ] |
| 89 | + * // CS => <Float64Array>[ ~0.93 ] |
| 90 | + * // SN => <Float64Array>[ ~0.34 ]` |
| 91 | + */ |
| 92 | + ( A: Float64Array, B: Float64Array, C: Float64Array, D: Float64Array, RT1R: Float64Array, RT1I: Float64Array, RT2R: Float64Array, RT2I: Float64Array, CS: Float64Array, SN: Float64Array ): void; |
| 93 | + |
| 94 | + /** |
| 95 | + * Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix `A` in standard form using alternative indexing semantics. |
| 96 | + * |
| 97 | + * Given a real 2×2 matrix: |
| 98 | + * |
| 99 | + * ```tex |
| 100 | + * \begin{bmatrix} |
| 101 | + * A & B \\ |
| 102 | + * C & D |
| 103 | + * \end{bmatrix} |
| 104 | + * ``` |
| 105 | + * |
| 106 | + * this routine computes an orthogonal matrix: |
| 107 | + * |
| 108 | + * ```tex |
| 109 | + * \begin{bmatrix} |
| 110 | + * \text{CS} & \text{SN} \\ |
| 111 | + * -\text{SN} & \text{CS} |
| 112 | + * \end{bmatrix} |
| 113 | + * ``` |
| 114 | + * |
| 115 | + * such that the matrix is reduced to Schur (quasi-triangular) form: |
| 116 | + * |
| 117 | + * ```tex |
| 118 | + * \begin{bmatrix} |
| 119 | + * \text{AA} & \text{BB} \\ |
| 120 | + * 0 & \text{DD} |
| 121 | + * \end{bmatrix} |
| 122 | + * ``` |
| 123 | + * |
| 124 | + * @param A - array containing the element A(1,1) |
| 125 | + * @param offsetA - index in `A` of the element A(1,1) |
| 126 | + * @param B - array containing the element A(1,2) |
| 127 | + * @param offsetB - index in `B` of the element A(1,2) |
| 128 | + * @param C - array containing the element A(2,1) |
| 129 | + * @param offsetC - index in `C` of the element A(2,1) |
| 130 | + * @param D - array containing the element A(2,2) |
| 131 | + * @param offsetD - index in `D` of the element A(2,2) |
| 132 | + * @param RT1R - output array for the real part of the first eigenvalue |
| 133 | + * @param offsetRT1R - index in `RT1R` at which to store the value |
| 134 | + * @param RT1I - output array for the imaginary part of the first eigenvalue |
| 135 | + * @param offsetRT1I - index in `RT1I` at which to store the value |
| 136 | + * @param RT2R - output array for the real part of the second eigenvalue |
| 137 | + * @param offsetRT2R - index in `RT2R` at which to store the value |
| 138 | + * @param RT2I - output array for the imaginary part of the second eigenvalue |
| 139 | + * @param offsetRT2I - index in `RT2I` at which to store the value |
| 140 | + * @param CS - output array for cosine of the rotation |
| 141 | + * @param offsetCS - index in `CS` at which to store the value |
| 142 | + * @param SN - output array for sine of the rotation |
| 143 | + * @param offsetSN - index in `SN` at which to store the value |
| 144 | + * |
| 145 | + * @example |
| 146 | + * var Float64Array = require( '@stdlib/array/float64' ); |
| 147 | + * |
| 148 | + * var A = new Float64Array( [ 4.0 ] ); |
| 149 | + * var B = new Float64Array( [ -5.0 ] ); |
| 150 | + * var C = new Float64Array( [ 2.0 ] ); |
| 151 | + * var D = new Float64Array( [ -3.0 ] ); |
| 152 | + * var RT1R = new Float64Array( 1 ); |
| 153 | + * var RT1I = new Float64Array( 1 ); |
| 154 | + * var RT2R = new Float64Array( 1 ); |
| 155 | + * var RT2I = new Float64Array( 1 ); |
| 156 | + * var CS = new Float64Array( 1 ); |
| 157 | + * var SN = new Float64Array( 1 ); |
| 158 | + * |
| 159 | + * dlanv2( A, 0, B, 0, C, 0, D, 0, RT1R, 0, RT1I, 0, RT2R, 0, RT2I, 0, CS, 0, SN, 0 ); |
| 160 | + * // A => <Float64Array>[ 2.0 ] |
| 161 | + * // B => <Float64Array>[ -7.0 ] |
| 162 | + * // C => <Float64Array>[ 0.0 ] |
| 163 | + * // D => <Float64Array>[ -1.0 ] |
| 164 | + * // RT1R => <Float64Array>[ 2.0 ] |
| 165 | + * // RT1I => <Float64Array>[ 0.0 ] |
| 166 | + * // RT2R => <Float64Array>[ -1.0 ] |
| 167 | + * // RT2I => <Float64Array>[ 0.0 ] |
| 168 | + * // CS => <Float64Array>[ ~0.93 ] |
| 169 | + * // SN => <Float64Array>[ ~0.34 ] |
| 170 | + */ |
| 171 | + ndarray( A: Float64Array, offsetA: number, B: Float64Array, offsetB: number, C: Float64Array, offsetC: number, D: Float64Array, offsetD: number, RT1R: Float64Array, offsetRT1R: number, RT1I: Float64Array, offsetRT1I: number, RT2R: Float64Array, offsetRT2R: number, RT2I: Float64Array, offsetRT2I: number, CS: Float64Array, offsetCS: number, SN: Float64Array, offsetSN: number ): void; |
| 172 | +} |
| 173 | + |
| 174 | +/** |
| 175 | +* Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix `A` in standard form using alternative indexing semantics. |
| 176 | +* |
| 177 | +* Given a real 2×2 matrix: |
| 178 | +* |
| 179 | +* ```tex |
| 180 | +* \begin{bmatrix} |
| 181 | +* A & B \\ |
| 182 | +* C & D |
| 183 | +* \end{bmatrix} |
| 184 | +* ``` |
| 185 | +* |
| 186 | +* this routine computes an orthogonal matrix: |
| 187 | +* |
| 188 | +* ```tex |
| 189 | +* \begin{bmatrix} |
| 190 | +* \text{CS} & \text{SN} \\ |
| 191 | +* -\text{SN} & \text{CS} |
| 192 | +* \end{bmatrix} |
| 193 | +* ``` |
| 194 | +* |
| 195 | +* such that the matrix is reduced to Schur (quasi-triangular) form: |
| 196 | +* |
| 197 | +* ```tex |
| 198 | +* \begin{bmatrix} |
| 199 | +* \text{AA} & \text{BB} \\ |
| 200 | +* 0 & \text{DD} |
| 201 | +* \end{bmatrix} |
| 202 | +* ``` |
| 203 | +* |
| 204 | +* @param A - array containing the element A(1,1) |
| 205 | +* @param B - array containing the element A(1,2) |
| 206 | +* @param C - array containing the element A(2,1) |
| 207 | +* @param D - array containing the element A(2,2) |
| 208 | +* @param RT1R - output array for the real part of the first eigenvalue |
| 209 | +* @param RT1I - output array for the imaginary part of the first eigenvalue |
| 210 | +* @param RT2R - output array for the real part of the second eigenvalue |
| 211 | +* @param RT2I - output array for the imaginary part of the second eigenvalue |
| 212 | +* @param CS - output array for cosine of the rotation |
| 213 | +* @param SN - output array for sine of the rotation |
| 214 | +* |
| 215 | +* @example |
| 216 | +* var Float64Array = require( '@stdlib/array/float64' ); |
| 217 | +* |
| 218 | +* var A = new Float64Array( [ 4.0 ] ); |
| 219 | +* var B = new Float64Array( [ -5.0 ] ); |
| 220 | +* var C = new Float64Array( [ 2.0 ] ); |
| 221 | +* var D = new Float64Array( [ -3.0 ] ); |
| 222 | +* var RT1R = new Float64Array( 1 ); |
| 223 | +* var RT1I = new Float64Array( 1 ); |
| 224 | +* var RT2R = new Float64Array( 1 ); |
| 225 | +* var RT2I = new Float64Array( 1 ); |
| 226 | +* var CS = new Float64Array( 1 ); |
| 227 | +* var SN = new Float64Array( 1 ); |
| 228 | +* |
| 229 | +* dlanv2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN ); |
| 230 | +* // A => <Float64Array>[ 2.0 ] |
| 231 | +* // B => <Float64Array>[ -7.0 ] |
| 232 | +* // C => <Float64Array>[ 0.0 ] |
| 233 | +* // D => <Float64Array>[ -1.0 ] |
| 234 | +* // RT1R => <Float64Array>[ 2.0 ] |
| 235 | +* // RT1I => <Float64Array>[ 0.0 ] |
| 236 | +* // RT2R => <Float64Array>[ -1.0 ] |
| 237 | +* // RT2I => <Float64Array>[ 0.0 ] |
| 238 | +* // CS => <Float64Array>[ ~0.93 ] |
| 239 | +* // SN => <Float64Array>[ ~0.34 ] |
| 240 | +* |
| 241 | +* @example |
| 242 | +* var Float64Array = require( '@stdlib/array/float64' ); |
| 243 | +* |
| 244 | +* var A = new Float64Array( [ 4.0 ] ); |
| 245 | +* var B = new Float64Array( [ -5.0 ] ); |
| 246 | +* var C = new Float64Array( [ 2.0 ] ); |
| 247 | +* var D = new Float64Array( [ -3.0 ] ); |
| 248 | +* var RT1R = new Float64Array( 1 ); |
| 249 | +* var RT1I = new Float64Array( 1 ); |
| 250 | +* var RT2R = new Float64Array( 1 ); |
| 251 | +* var RT2I = new Float64Array( 1 ); |
| 252 | +* var CS = new Float64Array( 1 ); |
| 253 | +* var SN = new Float64Array( 1 ); |
| 254 | +* |
| 255 | +* dlanv2( A, 0, B, 0, C, 0, D, 0, RT1R, 0, RT1I, 0, RT2R, 0, RT2I, 0, CS, 0, SN, 0 ); |
| 256 | +* // A => <Float64Array>[ 2.0 ] |
| 257 | +* // B => <Float64Array>[ -7.0 ] |
| 258 | +* // C => <Float64Array>[ 0.0 ] |
| 259 | +* // D => <Float64Array>[ -1.0 ] |
| 260 | +* // RT1R => <Float64Array>[ 2.0 ] |
| 261 | +* // RT1I => <Float64Array>[ 0.0 ] |
| 262 | +* // RT2R => <Float64Array>[ -1.0 ] |
| 263 | +* // RT2I => <Float64Array>[ 0.0 ] |
| 264 | +* // CS => <Float64Array>[ ~0.93 ] |
| 265 | +* // SN => <Float64Array>[ ~0.34 ] |
| 266 | +*/ |
| 267 | +declare var dlanv2: Routine; |
| 268 | + |
| 269 | + |
| 270 | +// EXPORTS // |
| 271 | + |
| 272 | +export = dlanv2; |
0 commit comments