You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+8-8Lines changed: 8 additions & 8 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -140,14 +140,14 @@ The namespace contains the following statistical functions:
140
140
- <spanclass="signature">[`dsvariance( N, correction, x, stride )`][@stdlib/stats/base/dsvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
141
141
- <spanclass="signature">[`dsvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dsvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.</span>
142
142
- <spanclass="signature">[`dvariance( N, correction, x, stride )`][@stdlib/stats/base/dvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array.</span>
143
-
- <spanclass="signature">[`dvariancech( N, correction, x, stride )`][@stdlib/stats/base/dvariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
143
+
- <spanclass="signature">[`dvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dvariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
144
144
- <spanclass="signature">[`dvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
145
-
- <spanclass="signature">[`dvariancetk( N, correction, x, stride )`][@stdlib/stats/base/dvariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
146
-
- <spanclass="signature">[`dvariancewd( N, correction, x, stride )`][@stdlib/stats/base/dvariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using Welford's algorithm.</span>
147
-
- <spanclass="signature">[`dvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dvarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
145
+
- <spanclass="signature">[`dvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/dvariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
146
+
- <spanclass="signature">[`dvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/dvariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using Welford's algorithm.</span>
147
+
- <spanclass="signature">[`dvarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/dvarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
148
148
- <spanclass="signature">[`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array provided a known mean.</span>
149
149
- <spanclass="signature">[`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.</span>
150
-
- <spanclass="signature">[`dvarmtk( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.</span>
150
+
- <spanclass="signature">[`dvarmtk( N, mean, correction, x, strideX )`][@stdlib/stats/base/dvarmtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.</span>
151
151
- <spanclass="signature">[`maxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/max-by]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a strided array via a callback function.</span>
152
152
- <spanclass="signature">[`max( N, x, stride )`][@stdlib/stats/base/max]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a strided array.</span>
153
153
- <spanclass="signature">[`maxabs( N, x, stride )`][@stdlib/stats/base/maxabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a strided array.</span>
@@ -216,7 +216,7 @@ The namespace contains the following statistical functions:
216
216
- <spanclass="signature">[`smeanors( N, x, stride )`][@stdlib/stats/base/smeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.</span>
217
217
- <spanclass="signature">[`smeanpn( N, x, stride )`][@stdlib/stats/base/smeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.</span>
218
218
- <spanclass="signature">[`smeanpw( N, x, stride )`][@stdlib/stats/base/smeanpw]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation.</span>
219
-
- <spanclass="signature">[`smeanwd( N, x, stride )`][@stdlib/stats/base/smeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.</span>
219
+
- <spanclass="signature">[`smeanwd( N, x, strideX )`][@stdlib/stats/base/smeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.</span>
220
220
- <spanclass="signature">[`smediansorted( N, x, strideX )`][@stdlib/stats/base/smediansorted]</span><spanclass="delimiter">: </span><spanclass="description">calculate the median value of a sorted single-precision floating-point strided array.</span>
221
221
- <spanclass="signature">[`smidrange( N, x, strideX )`][@stdlib/stats/base/smidrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mid-range of a single-precision floating-point strided array.</span>
222
222
- <spanclass="signature">[`smin( N, x, strideX )`][@stdlib/stats/base/smin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a single-precision floating-point strided array.</span>
@@ -263,9 +263,9 @@ The namespace contains the following statistical functions:
263
263
- <spanclass="signature">[`stdevwd( N, correction, x, stride )`][@stdlib/stats/base/stdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using Welford's algorithm.</span>
264
264
- <spanclass="signature">[`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
265
265
- <spanclass="signature">[`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array.</span>
266
-
- <spanclass="signature">[`svariancech( N, correction, x, stride )`][@stdlib/stats/base/svariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
266
+
- <spanclass="signature">[`svariancech( N, correction, x, strideX )`][@stdlib/stats/base/svariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
267
267
- <spanclass="signature">[`svariancepn( N, correction, x, stride )`][@stdlib/stats/base/svariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.</span>
268
-
- <spanclass="signature">[`svariancetk( N, correction, x, stride )`][@stdlib/stats/base/svariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
268
+
- <spanclass="signature">[`svariancetk( N, correction, x, strideX )`][@stdlib/stats/base/svariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
269
269
- <spanclass="signature">[`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using Welford's algorithm.</span>
270
270
- <spanclass="signature">[`svarianceyc( N, correction, x, stride )`][@stdlib/stats/base/svarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
271
271
- <spanclass="signature">[`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array.</span>
0 commit comments