| 
 | 1 | +<!--  | 
 | 2 | +
  | 
 | 3 | +@license Apache-2.0  | 
 | 4 | +
  | 
 | 5 | +Copyright (c) 2020 The Stdlib Authors.  | 
 | 6 | +
  | 
 | 7 | +Licensed under the Apache License, Version 2.0 (the "License");  | 
 | 8 | +you may not use this file except in compliance with the License.  | 
 | 9 | +You may obtain a copy of the License at  | 
 | 10 | +
  | 
 | 11 | +   http://www.apache.org/licenses/LICENSE-2.0  | 
 | 12 | +
  | 
 | 13 | +Unless required by applicable law or agreed to in writing, software  | 
 | 14 | +distributed under the License is distributed on an "AS IS" BASIS,  | 
 | 15 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
 | 16 | +See the License for the specific language governing permissions and  | 
 | 17 | +limitations under the License.  | 
 | 18 | +
  | 
 | 19 | +-->  | 
 | 20 | + | 
 | 21 | +# dmeanli  | 
 | 22 | + | 
 | 23 | +> Calculate the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using a one-pass trial mean algorithm.  | 
 | 24 | +
  | 
 | 25 | +<section class="intro">  | 
 | 26 | + | 
 | 27 | +The [arithmetic mean][arithmetic-mean] is defined as  | 
 | 28 | + | 
 | 29 | +<!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->  | 
 | 30 | + | 
 | 31 | +```math  | 
 | 32 | +\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i  | 
 | 33 | +```  | 
 | 34 | + | 
 | 35 | +<!-- <div class="equation" align="center" data-raw-text="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">  | 
 | 36 | +    <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@2f444e66f5cd85766019efeaf24447d1e0f1a491/lib/node_modules/@stdlib/stats/strided/dmeanli/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">  | 
 | 37 | +    <br>  | 
 | 38 | +</div> -->  | 
 | 39 | + | 
 | 40 | +<!-- </equation> -->  | 
 | 41 | + | 
 | 42 | +</section>  | 
 | 43 | + | 
 | 44 | +<!-- /.intro -->  | 
 | 45 | + | 
 | 46 | +<section class="usage">  | 
 | 47 | + | 
 | 48 | +## Usage  | 
 | 49 | + | 
 | 50 | +```javascript  | 
 | 51 | +var dmeanli = require( '@stdlib/stats/strided/dmeanli' );  | 
 | 52 | +```  | 
 | 53 | + | 
 | 54 | +#### dmeanli( N, x, strideX )  | 
 | 55 | + | 
 | 56 | +Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array `x` using a one-pass trial mean algorithm.  | 
 | 57 | + | 
 | 58 | +```javascript  | 
 | 59 | +var Float64Array = require( '@stdlib/array/float64' );  | 
 | 60 | + | 
 | 61 | +var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );  | 
 | 62 | + | 
 | 63 | +var v = dmeanli( x.length, x, 1 );  | 
 | 64 | +// returns ~0.3333  | 
 | 65 | +```  | 
 | 66 | + | 
 | 67 | +The function has the following parameters:  | 
 | 68 | + | 
 | 69 | +-   **N**: number of indexed elements.  | 
 | 70 | +-   **x**: input [`Float64Array`][@stdlib/array/float64].  | 
 | 71 | +-   **strideX**: stride length for `x`.  | 
 | 72 | + | 
 | 73 | +The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,  | 
 | 74 | + | 
 | 75 | +```javascript  | 
 | 76 | +var Float64Array = require( '@stdlib/array/float64' );  | 
 | 77 | + | 
 | 78 | +var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );  | 
 | 79 | + | 
 | 80 | +var v = dmeanli( 4, x, 2 );  | 
 | 81 | +// returns 1.25  | 
 | 82 | +```  | 
 | 83 | + | 
 | 84 | +Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.  | 
 | 85 | + | 
 | 86 | +<!-- eslint-disable stdlib/capitalized-comments -->  | 
 | 87 | + | 
 | 88 | +```javascript  | 
 | 89 | +var Float64Array = require( '@stdlib/array/float64' );  | 
 | 90 | + | 
 | 91 | +var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );  | 
 | 92 | +var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element  | 
 | 93 | + | 
 | 94 | +var v = dmeanli( 4, x1, 2 );  | 
 | 95 | +// returns 1.25  | 
 | 96 | +```  | 
 | 97 | + | 
 | 98 | +#### dmeanli.ndarray( N, x, strideX, offsetX )  | 
 | 99 | + | 
 | 100 | +Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using a one-pass trial mean algorithm and alternative indexing semantics.  | 
 | 101 | + | 
 | 102 | +```javascript  | 
 | 103 | +var Float64Array = require( '@stdlib/array/float64' );  | 
 | 104 | + | 
 | 105 | +var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );  | 
 | 106 | + | 
 | 107 | +var v = dmeanli.ndarray( x.length, x, 1, 0 );  | 
 | 108 | +// returns ~0.33333  | 
 | 109 | +```  | 
 | 110 | + | 
 | 111 | +The function has the following additional parameters:  | 
 | 112 | + | 
 | 113 | +-   **offsetX**: starting index for `x`.  | 
 | 114 | + | 
 | 115 | +While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other element in `x` starting from the second element  | 
 | 116 | + | 
 | 117 | +```javascript  | 
 | 118 | +var Float64Array = require( '@stdlib/array/float64' );  | 
 | 119 | + | 
 | 120 | +var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );  | 
 | 121 | + | 
 | 122 | +var v = dmeanli.ndarray( 4, x, 2, 1 );  | 
 | 123 | +// returns 1.25  | 
 | 124 | +```  | 
 | 125 | + | 
 | 126 | +</section>  | 
 | 127 | + | 
 | 128 | +<!-- /.usage -->  | 
 | 129 | + | 
 | 130 | +<section class="notes">  | 
 | 131 | + | 
 | 132 | +## Notes  | 
 | 133 | + | 
 | 134 | +-   If `N <= 0`, both functions return `NaN`.  | 
 | 135 | +-   The underlying algorithm is a specialized case of Welford's algorithm. Similar to the method of assumed mean, the first strided array element is used as a trial mean. The trial mean is subtracted from subsequent data values, and the average deviations used to adjust the initial guess. Accordingly, the algorithm's accuracy is best when data is **unordered** (i.e., the data is **not** sorted in either ascending or descending order such that the first value is an "extreme" value).  | 
 | 136 | + | 
 | 137 | +</section>  | 
 | 138 | + | 
 | 139 | +<!-- /.notes -->  | 
 | 140 | + | 
 | 141 | +<section class="examples">  | 
 | 142 | + | 
 | 143 | +## Examples  | 
 | 144 | + | 
 | 145 | +<!-- eslint no-undef: "error" -->  | 
 | 146 | + | 
 | 147 | +```javascript  | 
 | 148 | +var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );  | 
 | 149 | +var dmeanli = require( '@stdlib/stats/strided/dmeanli' );  | 
 | 150 | + | 
 | 151 | +var x = discreteUniform( 10, -50, 50, {  | 
 | 152 | +    'dtype': 'float64'  | 
 | 153 | +});  | 
 | 154 | +console.log( x );  | 
 | 155 | + | 
 | 156 | +var v = dmeanli( x.length, x, 1 );  | 
 | 157 | +console.log( v );  | 
 | 158 | +```  | 
 | 159 | + | 
 | 160 | +</section>  | 
 | 161 | + | 
 | 162 | +<!-- /.examples -->  | 
 | 163 | + | 
 | 164 | +<!-- C interface documentation. -->  | 
 | 165 | + | 
 | 166 | +* * *  | 
 | 167 | + | 
 | 168 | +<section class="c">  | 
 | 169 | + | 
 | 170 | +## C APIs  | 
 | 171 | + | 
 | 172 | +<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->  | 
 | 173 | + | 
 | 174 | +<section class="intro">  | 
 | 175 | + | 
 | 176 | +</section>  | 
 | 177 | + | 
 | 178 | +<!-- /.intro -->  | 
 | 179 | + | 
 | 180 | +<!-- C usage documentation. -->  | 
 | 181 | + | 
 | 182 | +<section class="usage">  | 
 | 183 | + | 
 | 184 | +### Usage  | 
 | 185 | + | 
 | 186 | +```c  | 
 | 187 | +#include "stdlib/stats/strided/dmeanli.h"  | 
 | 188 | +```  | 
 | 189 | + | 
 | 190 | +#### stdlib_strided_dmeanli( N, \*X, strideX )  | 
 | 191 | + | 
 | 192 | +Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using a one-pass trial mean algorithm.  | 
 | 193 | + | 
 | 194 | +```c  | 
 | 195 | +const double x[] = { 1.0, -2.0, 2.0 };  | 
 | 196 | + | 
 | 197 | +double v = stdlib_strided_dmeanli( 3, x, 1 );  | 
 | 198 | +// returns ~0.3333  | 
 | 199 | +```  | 
 | 200 | +
  | 
 | 201 | +The function accepts the following arguments:  | 
 | 202 | +
  | 
 | 203 | +-   **N**: `[in] CBLAS_INT` number of indexed elements.  | 
 | 204 | +-   **X**: `[in] double*` input array.  | 
 | 205 | +-   **strideX**: `[in] CBLAS_INT` stride length for `X`.  | 
 | 206 | +
  | 
 | 207 | +```c  | 
 | 208 | +double stdlib_strided_dmeanli( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );  | 
 | 209 | +```  | 
 | 210 | + | 
 | 211 | +#### stdlib_strided_dmeanli_ndarray( N, \*X, strideX, offsetX )  | 
 | 212 | + | 
 | 213 | +Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array using a one-pass trial mean algorithm and alternative indexing semantics.  | 
 | 214 | + | 
 | 215 | +```c  | 
 | 216 | +const double x[] = { 1.0, -2.0, 2.0 };  | 
 | 217 | + | 
 | 218 | +double v = stdlib_strided_dmeanli_ndarray( 3, x, 1, 0 );  | 
 | 219 | +// returns ~0.3333  | 
 | 220 | +```  | 
 | 221 | +
  | 
 | 222 | +The function accepts the following arguments:  | 
 | 223 | +
  | 
 | 224 | +-   **N**: `[in] CBLAS_INT` number of indexed elements.  | 
 | 225 | +-   **X**: `[in] double*` input array.  | 
 | 226 | +-   **strideX**: `[in] CBLAS_INT` stride length for `X`.  | 
 | 227 | +-   **offsetX**: `[in] CBLAS_INT` starting index for `X`.  | 
 | 228 | +
  | 
 | 229 | +```c  | 
 | 230 | +double stdlib_strided_dmeanli_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );  | 
 | 231 | +```  | 
 | 232 | + | 
 | 233 | +</section>  | 
 | 234 | + | 
 | 235 | +<!-- /.usage -->  | 
 | 236 | + | 
 | 237 | +<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->  | 
 | 238 | + | 
 | 239 | +<section class="notes">  | 
 | 240 | + | 
 | 241 | +</section>  | 
 | 242 | + | 
 | 243 | +<!-- /.notes -->  | 
 | 244 | + | 
 | 245 | +<!-- C API usage examples. -->  | 
 | 246 | + | 
 | 247 | +<section class="examples">  | 
 | 248 | + | 
 | 249 | +### Examples  | 
 | 250 | + | 
 | 251 | +```c  | 
 | 252 | +#include "stdlib/stats/strided/dmeanli.h"  | 
 | 253 | +#include <stdio.h>  | 
 | 254 | + | 
 | 255 | +int main( void ) {  | 
 | 256 | +    // Create a strided array:  | 
 | 257 | +    const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };  | 
 | 258 | + | 
 | 259 | +    // Specify the number of elements:  | 
 | 260 | +    const int N = 4;  | 
 | 261 | + | 
 | 262 | +    // Specify the stride length:  | 
 | 263 | +    const int strideX = 2;  | 
 | 264 | + | 
 | 265 | +    // Compute the arithmetic mean:  | 
 | 266 | +    double v = stdlib_strided_dmeanli( N, x, strideX );  | 
 | 267 | + | 
 | 268 | +    // Print the result:  | 
 | 269 | +    printf( "mean: %lf\n", v );  | 
 | 270 | +}  | 
 | 271 | +```  | 
 | 272 | +
  | 
 | 273 | +</section>  | 
 | 274 | +
  | 
 | 275 | +<!-- /.examples -->  | 
 | 276 | +
  | 
 | 277 | +</section>  | 
 | 278 | +
  | 
 | 279 | +<!-- /.c -->  | 
 | 280 | +
  | 
 | 281 | +* * *  | 
 | 282 | +
  | 
 | 283 | +<section class="references">  | 
 | 284 | +
  | 
 | 285 | +## References  | 
 | 286 | +
  | 
 | 287 | +-   Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022][@welford:1962a].  | 
 | 288 | +-   van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961][@vanreeken:1968a].  | 
 | 289 | +-   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154][@ling:1974a].  | 
 | 290 | +
  | 
 | 291 | +</section>  | 
 | 292 | +
  | 
 | 293 | +<!-- /.references -->  | 
 | 294 | +
  | 
 | 295 | +<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->  | 
 | 296 | +
  | 
 | 297 | +<section class="related">  | 
 | 298 | +
  | 
 | 299 | +* * *  | 
 | 300 | +
  | 
 | 301 | +## See Also  | 
 | 302 | +
  | 
 | 303 | +-   <span class="package-name">[`@stdlib/stats/base/dmean`][@stdlib/stats/base/dmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array.</span>  | 
 | 304 | +-   <span class="package-name">[`@stdlib/stats/base/dmeanlipw`][@stdlib/stats/base/dmeanlipw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>  | 
 | 305 | +-   <span class="package-name">[`@stdlib/stats/base/smeanli`][@stdlib/stats/base/smeanli]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>  | 
 | 306 | +
  | 
 | 307 | +</section>  | 
 | 308 | +
  | 
 | 309 | +<!-- /.related -->  | 
 | 310 | +
  | 
 | 311 | +<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->  | 
 | 312 | +
  | 
 | 313 | +<section class="links">  | 
 | 314 | +
  | 
 | 315 | +[arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean  | 
 | 316 | +
  | 
 | 317 | +[@stdlib/array/float64]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/array/float64  | 
 | 318 | +
  | 
 | 319 | +[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray  | 
 | 320 | +
  | 
 | 321 | +[@welford:1962a]: https://doi.org/10.1080/00401706.1962.10490022  | 
 | 322 | +
  | 
 | 323 | +[@vanreeken:1968a]: https://doi.org/10.1145/362929.362961  | 
 | 324 | +
  | 
 | 325 | +[@ling:1974a]: https://doi.org/10.2307/2286154  | 
 | 326 | +
  | 
 | 327 | +<!-- <related-links> -->  | 
 | 328 | +
  | 
 | 329 | +[@stdlib/stats/base/dmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dmean  | 
 | 330 | +
  | 
 | 331 | +[@stdlib/stats/base/dmeanlipw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dmeanlipw  | 
 | 332 | +
  | 
 | 333 | +[@stdlib/stats/base/smeanli]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/smeanli  | 
 | 334 | +
  | 
 | 335 | +<!-- </related-links> -->  | 
 | 336 | +
  | 
 | 337 | +</section>  | 
 | 338 | +
  | 
 | 339 | +<!-- /.links -->  | 
0 commit comments