diff --git a/lib/node_modules/@stdlib/blas/ext/base/README.md b/lib/node_modules/@stdlib/blas/ext/base/README.md index 6916947f92a2..1b8ca386b627 100644 --- a/lib/node_modules/@stdlib/blas/ext/base/README.md +++ b/lib/node_modules/@stdlib/blas/ext/base/README.md @@ -143,7 +143,7 @@ var ns = extblas; - [`snansum( N, x, stride )`][@stdlib/blas/ext/base/snansum]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values. - [`snansumkbn( N, x, stride )`][@stdlib/blas/ext/base/snansumkbn]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm. - [`snansumkbn2( N, x, stride )`][@stdlib/blas/ext/base/snansumkbn2]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm. -- [`snansumors( N, x, stride )`][@stdlib/blas/ext/base/snansumors]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation. +- [`snansumors( N, x, strideX )`][@stdlib/blas/ext/base/snansumors]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation. - [`snansumpw( N, x, strideX )`][@stdlib/blas/ext/base/snansumpw]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation. - [`srev( N, x, stride )`][@stdlib/blas/ext/base/srev]: reverse a single-precision floating-point strided array in-place. - [`ssort2hp( N, order, x, strideX, y, strideY )`][@stdlib/blas/ext/base/ssort2hp]: simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using heapsort. diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md index d3453aa63213..287a5d04998e 100644 --- a/lib/node_modules/@stdlib/stats/base/README.md +++ b/lib/node_modules/@stdlib/stats/base/README.md @@ -85,7 +85,7 @@ The namespace contains the following statistical functions: - [`dmediansorted( N, x, stride )`][@stdlib/stats/base/dmediansorted]: calculate the median value of a sorted double-precision floating-point strided array. - [`dmidrange( N, x, stride )`][@stdlib/stats/base/dmidrange]: calculate the mid-range of a double-precision floating-point strided array. - [`dmin( N, x, stride )`][@stdlib/stats/base/dmin]: calculate the minimum value of a double-precision floating-point strided array. -- [`dminabs( N, x, stride )`][@stdlib/stats/base/dminabs]: calculate the minimum absolute value of a double-precision floating-point strided array. +- [`dminabs( N, x, strideX )`][@stdlib/stats/base/dminabs]: calculate the minimum absolute value of a double-precision floating-point strided array. - [`dminsorted( N, x, stride )`][@stdlib/stats/base/dminsorted]: calculate the minimum value of a sorted double-precision floating-point strided array. - [`dmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask. - [`dmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask. @@ -98,7 +98,7 @@ The namespace contains the following statistical functions: - [`dnanmeanpw( N, x, stride )`][@stdlib/stats/base/dnanmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation. - [`dnanmeanwd( N, x, stride )`][@stdlib/stats/base/dnanmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values. - [`dnanmin( N, x, stride )`][@stdlib/stats/base/dnanmin]: calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values. -- [`dnanminabs( N, x, stride )`][@stdlib/stats/base/dnanminabs]: calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values. +- [`dnanminabs( N, x, strideX )`][@stdlib/stats/base/dnanminabs]: calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values. - [`dnanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values. - [`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values. - [`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]: calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values. @@ -115,7 +115,7 @@ The namespace contains the following statistical functions: - [`dnanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancetk]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm. - [`dnanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancewd]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm. - [`dnanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dnanvarianceyc]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. -- [`drange( N, x, stride )`][@stdlib/stats/base/drange]: calculate the range of a double-precision floating-point strided array. +- [`drange( N, x, strideX )`][@stdlib/stats/base/drange]: calculate the range of a double-precision floating-point strided array. - [`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array. - [`dsemch( N, correction, x, stride )`][@stdlib/stats/base/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm. - [`dsempn( N, correction, x, stride )`][@stdlib/stats/base/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.