diff --git a/lib/node_modules/@stdlib/blas/ext/base/README.md b/lib/node_modules/@stdlib/blas/ext/base/README.md
index 6916947f92a2..1b8ca386b627 100644
--- a/lib/node_modules/@stdlib/blas/ext/base/README.md
+++ b/lib/node_modules/@stdlib/blas/ext/base/README.md
@@ -143,7 +143,7 @@ var ns = extblas;
- [`snansum( N, x, stride )`][@stdlib/blas/ext/base/snansum]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values.
- [`snansumkbn( N, x, stride )`][@stdlib/blas/ext/base/snansumkbn]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.
- [`snansumkbn2( N, x, stride )`][@stdlib/blas/ext/base/snansumkbn2]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm.
-- [`snansumors( N, x, stride )`][@stdlib/blas/ext/base/snansumors]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation.
+- [`snansumors( N, x, strideX )`][@stdlib/blas/ext/base/snansumors]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation.
- [`snansumpw( N, x, strideX )`][@stdlib/blas/ext/base/snansumpw]: calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation.
- [`srev( N, x, stride )`][@stdlib/blas/ext/base/srev]: reverse a single-precision floating-point strided array in-place.
- [`ssort2hp( N, order, x, strideX, y, strideY )`][@stdlib/blas/ext/base/ssort2hp]: simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using heapsort.
diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index d3453aa63213..287a5d04998e 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -85,7 +85,7 @@ The namespace contains the following statistical functions:
- [`dmediansorted( N, x, stride )`][@stdlib/stats/base/dmediansorted]: calculate the median value of a sorted double-precision floating-point strided array.
- [`dmidrange( N, x, stride )`][@stdlib/stats/base/dmidrange]: calculate the mid-range of a double-precision floating-point strided array.
- [`dmin( N, x, stride )`][@stdlib/stats/base/dmin]: calculate the minimum value of a double-precision floating-point strided array.
-- [`dminabs( N, x, stride )`][@stdlib/stats/base/dminabs]: calculate the minimum absolute value of a double-precision floating-point strided array.
+- [`dminabs( N, x, strideX )`][@stdlib/stats/base/dminabs]: calculate the minimum absolute value of a double-precision floating-point strided array.
- [`dminsorted( N, x, stride )`][@stdlib/stats/base/dminsorted]: calculate the minimum value of a sorted double-precision floating-point strided array.
- [`dmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask.
- [`dmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask.
@@ -98,7 +98,7 @@ The namespace contains the following statistical functions:
- [`dnanmeanpw( N, x, stride )`][@stdlib/stats/base/dnanmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.
- [`dnanmeanwd( N, x, stride )`][@stdlib/stats/base/dnanmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values.
- [`dnanmin( N, x, stride )`][@stdlib/stats/base/dnanmin]: calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values.
-- [`dnanminabs( N, x, stride )`][@stdlib/stats/base/dnanminabs]: calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.
+- [`dnanminabs( N, x, strideX )`][@stdlib/stats/base/dnanminabs]: calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.
- [`dnanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]: calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
@@ -115,7 +115,7 @@ The namespace contains the following statistical functions:
- [`dnanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancetk]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
- [`dnanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancewd]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
- [`dnanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dnanvarianceyc]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
-- [`drange( N, x, stride )`][@stdlib/stats/base/drange]: calculate the range of a double-precision floating-point strided array.
+- [`drange( N, x, strideX )`][@stdlib/stats/base/drange]: calculate the range of a double-precision floating-point strided array.
- [`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array.
- [`dsemch( N, correction, x, stride )`][@stdlib/stats/base/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
- [`dsempn( N, correction, x, stride )`][@stdlib/stats/base/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.