diff --git a/lib/node_modules/@stdlib/blas/ext/base/README.md b/lib/node_modules/@stdlib/blas/ext/base/README.md
index 5513c1b8361e..a00109e052a6 100644
--- a/lib/node_modules/@stdlib/blas/ext/base/README.md
+++ b/lib/node_modules/@stdlib/blas/ext/base/README.md
@@ -124,10 +124,10 @@ var ns = extblas;
- [`sapx( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapx]: add a constant to each element in a single-precision floating-point strided array.
- [`sapxsum( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsum]: add a constant to each single-precision floating-point strided array element and compute the sum.
- [`sapxsumkbn( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsumkbn]: add a constant to each single-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.
-- [`sapxsumkbn2( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsumkbn2]: add a constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.
+- [`sapxsumkbn2( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumkbn2]: add a scalar constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm.
- [`sapxsumors( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumors]: add a scalar constant to each single-precision floating-point strided array element and compute the sum using ordinary recursive summation.
-- [`sapxsumpw( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsumpw]: add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation.
-- [`sasumpw( N, x, stride )`][@stdlib/blas/ext/base/sasumpw]: calculate the sum of absolute values (_L1_ norm) of single-precision floating-point strided array elements using pairwise summation.
+- [`sapxsumpw( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumpw]: add a scalar constant to each single-precision floating-point strided array element and compute the sum using pairwise summation.
+- [`sasumpw( N, x, strideX )`][@stdlib/blas/ext/base/sasumpw]: calculate the sum of absolute values (_L1_ norm) of single-precision floating-point strided array elements using pairwise summation.
- [`scusum( N, sum, x, strideX, y, strideY )`][@stdlib/blas/ext/base/scusum]: calculate the cumulative sum of single-precision floating-point strided array elements.
- [`scusumkbn( N, sum, x, strideX, y, strideY )`][@stdlib/blas/ext/base/scusumkbn]: calculate the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
- [`scusumkbn2( N, sum, x, strideX, y, strideY )`][@stdlib/blas/ext/base/scusumkbn2]: calculate the cumulative sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.
diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index f09ae13fa344..092e5318ab60 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -70,13 +70,13 @@ The namespace contains the following statistical functions:
- [`dmaxabssorted( N, x, strideX )`][@stdlib/stats/base/dmaxabssorted]: calculate the maximum absolute value of a sorted double-precision floating-point strided array.
- [`dmaxsorted( N, x, strideX )`][@stdlib/stats/base/dmaxsorted]: calculate the maximum value of a sorted double-precision floating-point strided array.
- [`dmean( N, x, stride )`][@stdlib/stats/base/dmean]: calculate the arithmetic mean of a double-precision floating-point strided array.
-- [`dmeankbn( N, x, stride )`][@stdlib/stats/base/dmeankbn]: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.
+- [`dmeankbn( N, x, strideX )`][@stdlib/stats/base/dmeankbn]: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.
- [`dmeankbn2( N, x, strideX )`][@stdlib/stats/base/dmeankbn2]: calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.
-- [`dmeanli( N, x, stride )`][@stdlib/stats/base/dmeanli]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`dmeanli( N, x, strideX )`][@stdlib/stats/base/dmeanli]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
- [`dmeanlipw( N, x, stride )`][@stdlib/stats/base/dmeanlipw]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.
-- [`dmeanors( N, x, stride )`][@stdlib/stats/base/dmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.
+- [`dmeanors( N, x, strideX )`][@stdlib/stats/base/dmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.
- [`dmeanpn( N, x, stride )`][@stdlib/stats/base/dmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.
-- [`dmeanpw( N, x, stride )`][@stdlib/stats/base/dmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.
+- [`dmeanpw( N, x, strideX )`][@stdlib/stats/base/dmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.
- [`dmeanstdev( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdev]: calculate the mean and standard deviation of a double-precision floating-point strided array.
- [`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]: calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.
- [`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]: calculate the mean and variance of a double-precision floating-point strided array.
@@ -117,11 +117,11 @@ The namespace contains the following statistical functions:
- [`dnanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dnanvarianceyc]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
- [`drange( N, x, strideX )`][@stdlib/stats/base/drange]: calculate the range of a double-precision floating-point strided array.
- [`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array.
-- [`dsemch( N, correction, x, stride )`][@stdlib/stats/base/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`dsemch( N, correction, x, strideX )`][@stdlib/stats/base/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
- [`dsempn( N, correction, x, stride )`][@stdlib/stats/base/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.
-- [`dsemtk( N, correction, x, stride )`][@stdlib/stats/base/dsemtk]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.
+- [`dsemtk( N, correction, x, strideX )`][@stdlib/stats/base/dsemtk]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.
- [`dsemwd( N, correction, x, strideX )`][@stdlib/stats/base/dsemwd]: calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.
-- [`dsemyc( N, correction, x, stride )`][@stdlib/stats/base/dsemyc]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
+- [`dsemyc( N, correction, x, strideX )`][@stdlib/stats/base/dsemyc]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
- [`dsmean( N, x, stride )`][@stdlib/stats/base/dsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.
- [`dsmeanors( N, x, stride )`][@stdlib/stats/base/dsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.
- [`dsmeanpn( N, x, stride )`][@stdlib/stats/base/dsmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.
@@ -201,7 +201,7 @@ The namespace contains the following statistical functions:
- [`scumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/scumin]: calculate the cumulative minimum of single-precision floating-point strided array elements.
- [`scuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/scuminabs]: calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.
- [`sdsmean( N, x, stride )`][@stdlib/stats/base/sdsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation.
-- [`sdsmeanors( N, x, stride )`][@stdlib/stats/base/sdsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.
+- [`sdsmeanors( N, x, strideX )`][@stdlib/stats/base/sdsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.
- [`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation.
- [`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation.
- [`smax( N, x, strideX )`][@stdlib/stats/base/smax]: calculate the maximum value of a single-precision floating-point strided array.
@@ -267,7 +267,7 @@ The namespace contains the following statistical functions:
- [`svariancepn( N, correction, x, stride )`][@stdlib/stats/base/svariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.
- [`svariancetk( N, correction, x, strideX )`][@stdlib/stats/base/svariancetk]: calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.
- [`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]: calculate the variance of a single-precision floating-point strided array using Welford's algorithm.
-- [`svarianceyc( N, correction, x, stride )`][@stdlib/stats/base/svarianceyc]: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
+- [`svarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/svarianceyc]: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
- [`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]: calculate the variance of a strided array.
- [`variancech( N, correction, x, stride )`][@stdlib/stats/base/variancech]: calculate the variance of a strided array using a one-pass trial mean algorithm.
- [`variancepn( N, correction, x, stride )`][@stdlib/stats/base/variancepn]: calculate the variance of a strided array using a two-pass algorithm.