diff --git a/lib/node_modules/@stdlib/blas/ext/base/README.md b/lib/node_modules/@stdlib/blas/ext/base/README.md index 5513c1b8361e..a00109e052a6 100644 --- a/lib/node_modules/@stdlib/blas/ext/base/README.md +++ b/lib/node_modules/@stdlib/blas/ext/base/README.md @@ -124,10 +124,10 @@ var ns = extblas; - [`sapx( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapx]: add a constant to each element in a single-precision floating-point strided array. - [`sapxsum( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsum]: add a constant to each single-precision floating-point strided array element and compute the sum. - [`sapxsumkbn( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsumkbn]: add a constant to each single-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm. -- [`sapxsumkbn2( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsumkbn2]: add a constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm. +- [`sapxsumkbn2( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumkbn2]: add a scalar constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm. - [`sapxsumors( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumors]: add a scalar constant to each single-precision floating-point strided array element and compute the sum using ordinary recursive summation. -- [`sapxsumpw( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsumpw]: add a constant to each single-precision floating-point strided array element and compute the sum using pairwise summation. -- [`sasumpw( N, x, stride )`][@stdlib/blas/ext/base/sasumpw]: calculate the sum of absolute values (_L1_ norm) of single-precision floating-point strided array elements using pairwise summation. +- [`sapxsumpw( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumpw]: add a scalar constant to each single-precision floating-point strided array element and compute the sum using pairwise summation. +- [`sasumpw( N, x, strideX )`][@stdlib/blas/ext/base/sasumpw]: calculate the sum of absolute values (_L1_ norm) of single-precision floating-point strided array elements using pairwise summation. - [`scusum( N, sum, x, strideX, y, strideY )`][@stdlib/blas/ext/base/scusum]: calculate the cumulative sum of single-precision floating-point strided array elements. - [`scusumkbn( N, sum, x, strideX, y, strideY )`][@stdlib/blas/ext/base/scusumkbn]: calculate the cumulative sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm. - [`scusumkbn2( N, sum, x, strideX, y, strideY )`][@stdlib/blas/ext/base/scusumkbn2]: calculate the cumulative sum of single-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm. diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md index f09ae13fa344..092e5318ab60 100644 --- a/lib/node_modules/@stdlib/stats/base/README.md +++ b/lib/node_modules/@stdlib/stats/base/README.md @@ -70,13 +70,13 @@ The namespace contains the following statistical functions: - [`dmaxabssorted( N, x, strideX )`][@stdlib/stats/base/dmaxabssorted]: calculate the maximum absolute value of a sorted double-precision floating-point strided array. - [`dmaxsorted( N, x, strideX )`][@stdlib/stats/base/dmaxsorted]: calculate the maximum value of a sorted double-precision floating-point strided array. - [`dmean( N, x, stride )`][@stdlib/stats/base/dmean]: calculate the arithmetic mean of a double-precision floating-point strided array. -- [`dmeankbn( N, x, stride )`][@stdlib/stats/base/dmeankbn]: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm. +- [`dmeankbn( N, x, strideX )`][@stdlib/stats/base/dmeankbn]: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm. - [`dmeankbn2( N, x, strideX )`][@stdlib/stats/base/dmeankbn2]: calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm. -- [`dmeanli( N, x, stride )`][@stdlib/stats/base/dmeanli]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm. +- [`dmeanli( N, x, strideX )`][@stdlib/stats/base/dmeanli]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm. - [`dmeanlipw( N, x, stride )`][@stdlib/stats/base/dmeanlipw]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation. -- [`dmeanors( N, x, stride )`][@stdlib/stats/base/dmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation. +- [`dmeanors( N, x, strideX )`][@stdlib/stats/base/dmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation. - [`dmeanpn( N, x, stride )`][@stdlib/stats/base/dmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm. -- [`dmeanpw( N, x, stride )`][@stdlib/stats/base/dmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation. +- [`dmeanpw( N, x, strideX )`][@stdlib/stats/base/dmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation. - [`dmeanstdev( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdev]: calculate the mean and standard deviation of a double-precision floating-point strided array. - [`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]: calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm. - [`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]: calculate the mean and variance of a double-precision floating-point strided array. @@ -117,11 +117,11 @@ The namespace contains the following statistical functions: - [`dnanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dnanvarianceyc]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. - [`drange( N, x, strideX )`][@stdlib/stats/base/drange]: calculate the range of a double-precision floating-point strided array. - [`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array. -- [`dsemch( N, correction, x, stride )`][@stdlib/stats/base/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm. +- [`dsemch( N, correction, x, strideX )`][@stdlib/stats/base/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm. - [`dsempn( N, correction, x, stride )`][@stdlib/stats/base/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm. -- [`dsemtk( N, correction, x, stride )`][@stdlib/stats/base/dsemtk]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm. +- [`dsemtk( N, correction, x, strideX )`][@stdlib/stats/base/dsemtk]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm. - [`dsemwd( N, correction, x, strideX )`][@stdlib/stats/base/dsemwd]: calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm. -- [`dsemyc( N, correction, x, stride )`][@stdlib/stats/base/dsemyc]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. +- [`dsemyc( N, correction, x, strideX )`][@stdlib/stats/base/dsemyc]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. - [`dsmean( N, x, stride )`][@stdlib/stats/base/dsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result. - [`dsmeanors( N, x, stride )`][@stdlib/stats/base/dsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result. - [`dsmeanpn( N, x, stride )`][@stdlib/stats/base/dsmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result. @@ -201,7 +201,7 @@ The namespace contains the following statistical functions: - [`scumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/scumin]: calculate the cumulative minimum of single-precision floating-point strided array elements. - [`scuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/scuminabs]: calculate the cumulative minimum absolute value of single-precision floating-point strided array elements. - [`sdsmean( N, x, stride )`][@stdlib/stats/base/sdsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation. -- [`sdsmeanors( N, x, stride )`][@stdlib/stats/base/sdsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation. +- [`sdsmeanors( N, x, strideX )`][@stdlib/stats/base/sdsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation. - [`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation. - [`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation. - [`smax( N, x, strideX )`][@stdlib/stats/base/smax]: calculate the maximum value of a single-precision floating-point strided array. @@ -267,7 +267,7 @@ The namespace contains the following statistical functions: - [`svariancepn( N, correction, x, stride )`][@stdlib/stats/base/svariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm. - [`svariancetk( N, correction, x, strideX )`][@stdlib/stats/base/svariancetk]: calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm. - [`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]: calculate the variance of a single-precision floating-point strided array using Welford's algorithm. -- [`svarianceyc( N, correction, x, stride )`][@stdlib/stats/base/svarianceyc]: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. +- [`svarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/svarianceyc]: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. - [`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]: calculate the variance of a strided array. - [`variancech( N, correction, x, stride )`][@stdlib/stats/base/variancech]: calculate the variance of a strided array using a one-pass trial mean algorithm. - [`variancepn( N, correction, x, stride )`][@stdlib/stats/base/variancepn]: calculate the variance of a strided array using a two-pass algorithm.