diff --git a/lib/node_modules/@stdlib/blas/ext/base/README.md b/lib/node_modules/@stdlib/blas/ext/base/README.md index 76a01be4de7a..1ee952c9ebd3 100644 --- a/lib/node_modules/@stdlib/blas/ext/base/README.md +++ b/lib/node_modules/@stdlib/blas/ext/base/README.md @@ -121,8 +121,8 @@ var ns = extblas; - [`gsumkbn2( N, x, strideX )`][@stdlib/blas/ext/base/gsumkbn2]: calculate the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm. - [`gsumors( N, x, strideX )`][@stdlib/blas/ext/base/gsumors]: calculate the sum of strided array elements using ordinary recursive summation. - [`gsumpw( N, x, strideX )`][@stdlib/blas/ext/base/gsumpw]: calculate the sum of strided array elements using pairwise summation. -- [`sapx( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapx]: add a constant to each element in a single-precision floating-point strided array. -- [`sapxsum( N, alpha, x, stride )`][@stdlib/blas/ext/base/sapxsum]: add a constant to each single-precision floating-point strided array element and compute the sum. +- [`sapx( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapx]: add a scalar constant to each element in a single-precision floating-point strided array. +- [`sapxsum( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsum]: add a scalar constant to each single-precision floating-point strided array element and compute the sum. - [`sapxsumkbn( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumkbn]: add a scalar constant to each single-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm. - [`sapxsumkbn2( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumkbn2]: add a scalar constant to each single-precision floating-point strided array element and compute the sum using a second-order iterative Kahan–Babuška algorithm. - [`sapxsumors( N, alpha, x, strideX )`][@stdlib/blas/ext/base/sapxsumors]: add a scalar constant to each single-precision floating-point strided array element and compute the sum using ordinary recursive summation. diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md index d01dd353a3df..8bb7e77f9887 100644 --- a/lib/node_modules/@stdlib/stats/base/README.md +++ b/lib/node_modules/@stdlib/stats/base/README.md @@ -94,7 +94,7 @@ The namespace contains the following statistical functions: - [`dnanmean( N, x, stride )`][@stdlib/stats/base/dnanmean]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values. - [`dnanmeanors( N, x, stride )`][@stdlib/stats/base/dnanmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation. - [`dnanmeanpn( N, x, stride )`][@stdlib/stats/base/dnanmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm. -- [`dnanmeanpw( N, x, stride )`][@stdlib/stats/base/dnanmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation. +- [`dnanmeanpw( N, x, strideX )`][@stdlib/stats/base/dnanmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation. - [`dnanmeanwd( N, x, strideX )`][@stdlib/stats/base/dnanmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values. - [`dnanmin( N, x, strideX )`][@stdlib/stats/base/dnanmin]: calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values. - [`dnanminabs( N, x, strideX )`][@stdlib/stats/base/dnanminabs]: calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values. @@ -124,7 +124,7 @@ The namespace contains the following statistical functions: - [`dsmean( N, x, stride )`][@stdlib/stats/base/dsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result. - [`dsmeanors( N, x, strideX )`][@stdlib/stats/base/dsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result. - [`dsmeanpn( N, x, strideX )`][@stdlib/stats/base/dsmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result. -- [`dsmeanpw( N, x, stride )`][@stdlib/stats/base/dsmeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result. +- [`dsmeanpw( N, x, strideX )`][@stdlib/stats/base/dsmeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result. - [`dsmeanwd( N, x, strideX )`][@stdlib/stats/base/dsmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result. - [`dsnanmean( N, x, stride )`][@stdlib/stats/base/dsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result. - [`dsnanmeanors( N, x, stride )`][@stdlib/stats/base/dsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result. @@ -210,7 +210,7 @@ The namespace contains the following statistical functions: - [`smean( N, x, stride )`][@stdlib/stats/base/smean]: calculate the arithmetic mean of a single-precision floating-point strided array. - [`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]: calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm. - [`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]: calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm. -- [`smeanli( N, x, stride )`][@stdlib/stats/base/smeanli]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm. +- [`smeanli( N, x, strideX )`][@stdlib/stats/base/smeanli]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm. - [`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation. - [`smeanors( N, x, stride )`][@stdlib/stats/base/smeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation. - [`smeanpn( N, x, stride )`][@stdlib/stats/base/smeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.