diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md index bb51f7f2ac3c..068869df4120 100644 --- a/lib/node_modules/@stdlib/stats/base/README.md +++ b/lib/node_modules/@stdlib/stats/base/README.md @@ -88,7 +88,7 @@ The namespace contains the following statistical functions: - [`dnanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevwd]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm. - [`dnanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevyc]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. - [`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values. -- [`dnanvariancech( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancech]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm. +- [`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancech]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm. - [`dnanvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancepn]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm. - [`dnanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancetk]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm. - [`dnanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancewd]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.