diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index bb51f7f2ac3c..068869df4120 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -88,7 +88,7 @@ The namespace contains the following statistical functions:
- [`dnanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevwd]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
- [`dnanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevyc]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
- [`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.
-- [`dnanvariancech( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancech]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
+- [`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancech]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
- [`dnanvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancepn]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
- [`dnanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancetk]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
- [`dnanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancewd]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.