diff --git a/lib/node_modules/@stdlib/math/base/ops/README.md b/lib/node_modules/@stdlib/math/base/ops/README.md
index e42225a54a75..df3f5af5e2a1 100644
--- a/lib/node_modules/@stdlib/math/base/ops/README.md
+++ b/lib/node_modules/@stdlib/math/base/ops/README.md
@@ -45,7 +45,6 @@ The namespace contains the following functions:
-- [`cnegf( z )`][@stdlib/complex/float32/base/neg]: negate a single-precision complex floating-point number.
- [`csub( z1, z2 )`][@stdlib/math/base/ops/csub]: subtract two double-precision complex floating-point numbers.
- [`csubf( z1, z2 )`][@stdlib/math/base/ops/csubf]: subtract two single-precision complex floating-point numbers.
@@ -89,8 +88,6 @@ console.log( ns );
-[@stdlib/complex/float32/base/neg]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/complex/float32/base/neg
-
[@stdlib/math/base/ops/csub]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/math/base/ops/csub
[@stdlib/math/base/ops/csubf]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/math/base/ops/csubf
diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index 14659ee62370..75209872be3c 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -81,12 +81,12 @@ The namespace contains the following statistical functions:
- [`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]: calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`dnanrange( N, x, strideX )`][@stdlib/stats/base/dnanrange]: calculate the range of a double-precision floating-point strided array, ignoring `NaN` values.
- [`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.
-- [`dnanstdevch( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevch]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
-- [`dnanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevpn]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
+- [`dnanstdevch( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevch]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
+- [`dnanstdevpn( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevpn]: calculate the standard deviation of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass algorithm.
- [`dnanstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevtk]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
- [`dnanstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevwd]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
- [`dnanstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevyc]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
-- [`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.
+- [`dnanvariance( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariance]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.
- [`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancech]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
- [`dnanvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancepn]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
- [`dnanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancetk]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
@@ -115,7 +115,7 @@ The namespace contains the following statistical functions:
- [`dstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dstdevwd]: calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.
- [`dstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dstdevyc]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
- [`dsvariance( N, correction, x, stride )`][@stdlib/stats/base/dsvariance]: calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.
-- [`dsvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dsvariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.
+- [`dsvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dsvariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.
- [`dvariance( N, correction, x, strideX )`][@stdlib/stats/base/dvariance]: calculate the variance of a double-precision floating-point strided array.
- [`dvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dvariancech]: calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.
- [`dvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dvariancepn]: calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.
@@ -206,8 +206,8 @@ The namespace contains the following statistical functions:
- [`snanmaxabs( N, x, strideX )`][@stdlib/stats/base/snanmaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.
- [`snanmean( N, x, stride )`][@stdlib/stats/base/snanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values.
- [`snanmeanors( N, x, strideX )`][@stdlib/stats/base/snanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.
-- [`snanmeanpn( N, x, stride )`][@stdlib/stats/base/snanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
-- [`snanmeanwd( N, x, stride )`][@stdlib/stats/base/snanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.
+- [`snanmeanpn( N, x, strideX )`][@stdlib/stats/base/snanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
+- [`snanmeanwd( N, x, strideX )`][@stdlib/stats/base/snanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.
- [`snanmin( N, x, strideX )`][@stdlib/stats/base/snanmin]: calculate the minimum value of a single-precision floating-point strided array, ignoring `NaN` values.
- [`snanminabs( N, x, strideX )`][@stdlib/stats/base/snanminabs]: calculate the minimum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.
- [`snanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmax]: calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.