diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/README.md b/lib/node_modules/@stdlib/stats/base/nanmeanpn/README.md
index 4a48a17f883d..6606c121a2a9 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/README.md
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/README.md
@@ -67,62 +67,52 @@ The function has the following parameters:
- **N**: number of indexed elements.
- **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
-- **stride**: index increment for `x`.
+- **strideX**: stride length for `x`.
-The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
+The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
```javascript
-var floor = require( '@stdlib/math/base/special/floor' );
+var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];
-var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ];
-var N = floor( x.length / 2 );
-
-var v = nanmeanpn( N, x, 2 );
+var v = nanmeanpn( 5, x, 2 );
// returns 1.25
```
Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
-
+
```javascript
var Float64Array = require( '@stdlib/array/float64' );
-var floor = require( '@stdlib/math/base/special/floor' );
-var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
+var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
-var N = floor( x0.length / 2 );
-
-var v = nanmeanpn( N, x1, 2 );
+var v = nanmeanpn( 5, x1, 2 );
// returns 1.25
```
-#### nanmeanpn.ndarray( N, x, stride, offset )
+#### nanmeanpn.ndarray( N, x, strideX, offsetX )
Computes the [arithmetic mean][arithmetic-mean] of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm and alternative indexing semantics.
```javascript
var x = [ 1.0, -2.0, NaN, 2.0 ];
-var N = x.length;
-var v = nanmeanpn.ndarray( N, x, 1, 0 );
+var v = nanmeanpn.ndarray( 4, x, 1, 0 );
// returns ~0.33333
```
The function has the following additional parameters:
-- **offset**: starting index for `x`.
+- **offsetX**: starting index for `x`.
-While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
+While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
```javascript
-var floor = require( '@stdlib/math/base/special/floor' );
-
-var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ];
-var N = floor( x.length / 2 );
+var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
-var v = nanmeanpn.ndarray( N, x, 2, 1 );
+var v = nanmeanpn.ndarray( 5, x, 2, 1 );
// returns 1.25
```
@@ -135,8 +125,9 @@ var v = nanmeanpn.ndarray( N, x, 2, 1 );
## Notes
- If `N <= 0`, both functions return `NaN`.
+- Both functions support array-like objects having getter and setter accessors for array element access (e.g., [`@stdlib/array/base/accessor`][@stdlib/array/base/accessor]).
- If every indexed element is `NaN`, both functions return `NaN`.
-- Depending on the environment, the typed versions ([`dnanmeanpn`][@stdlib/stats/base/dnanmeanpn], [`snanmeanpn`][@stdlib/stats/base/snanmeanpn], etc.) are likely to be significantly more performant.
+- Depending on the environment, the typed versions ([`dnanmeanpn`][@stdlib/stats/strided/dnanmeanpn], [`snanmeanpn`][@stdlib/stats/strided/snanmeanpn], etc.) are likely to be significantly more performant.
@@ -149,22 +140,19 @@ var v = nanmeanpn.ndarray( N, x, 2, 1 );
```javascript
-var randu = require( '@stdlib/random/base/randu' );
-var round = require( '@stdlib/math/base/special/round' );
-var Float64Array = require( '@stdlib/array/float64' );
+var uniform = require( '@stdlib/random/base/uniform' );
+var filledarrayBy = require( '@stdlib/array/filled-by' );
+var bernoulli = require( '@stdlib/random/base/bernoulli' );
var nanmeanpn = require( '@stdlib/stats/base/nanmeanpn' );
-var x;
-var i;
-
-x = new Float64Array( 10 );
-for ( i = 0; i < x.length; i++ ) {
- if ( randu() < 0.2 ) {
- x[ i ] = NaN;
- } else {
- x[ i ] = round( (randu()*100.0) - 50.0 );
+function rand() {
+ if ( bernoulli( 0.8 ) < 1 ) {
+ return NaN;
}
+ return uniform( -50.0, 50.0 );
}
+
+var x = filledarrayBy( 10, 'generic', rand );
console.log( x );
var v = nanmeanpn( x.length, x, 1 );
@@ -196,10 +184,10 @@ console.log( v );
## See Also
-- [`@stdlib/stats/base/dnanmeanpn`][@stdlib/stats/base/dnanmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring NaN values and using a two-pass error correction algorithm.
+- [`@stdlib/stats/strided/dnanmeanpn`][@stdlib/stats/strided/dnanmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring NaN values and using a two-pass error correction algorithm.
- [`@stdlib/stats/base/meanpn`][@stdlib/stats/base/meanpn]: calculate the arithmetic mean of a strided array using a two-pass error correction algorithm.
- [`@stdlib/stats/base/nanmean`][@stdlib/stats/base/nanmean]: calculate the arithmetic mean of a strided array, ignoring NaN values.
-- [`@stdlib/stats/base/snanmeanpn`][@stdlib/stats/base/snanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using a two-pass error correction algorithm.
+- [`@stdlib/stats/strided/snanmeanpn`][@stdlib/stats/strided/snanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using a two-pass error correction algorithm.
@@ -221,13 +209,15 @@ console.log( v );
-[@stdlib/stats/base/dnanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dnanmeanpn
+[@stdlib/stats/strided/dnanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmeanpn
[@stdlib/stats/base/meanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/meanpn
[@stdlib/stats/base/nanmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/nanmean
-[@stdlib/stats/base/snanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanmeanpn
+[@stdlib/array/base/accessor]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/array/base/accessor
+
+[@stdlib/stats/strided/snanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmeanpn
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/benchmark/benchmark.js b/lib/node_modules/@stdlib/stats/base/nanmeanpn/benchmark/benchmark.js
index 103d03070e0d..6cdd7e8e84bc 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/benchmark/benchmark.js
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/benchmark/benchmark.js
@@ -21,15 +21,30 @@
// MODULES //
var bench = require( '@stdlib/bench' );
-var randu = require( '@stdlib/random/base/randu' );
+var uniform = require( '@stdlib/random/base/uniform' );
+var bernoulli = require( '@stdlib/random/base/bernoulli' );
+var filledarrayBy = require( '@stdlib/array/filled-by' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var pkg = require( './../package.json' ).name;
-var nanmeanpn = require( './../lib/nanmeanpn.js' );
+var nanmeanpn = require( './../lib/main.js' );
// FUNCTIONS //
+/**
+* Returns a random value or `NaN`.
+*
+* @private
+* @returns {number} random number or `NaN`
+*/
+function rand() {
+ if ( bernoulli( 0.8 ) < 1 ) {
+ return NaN;
+ }
+ return uniform( -10.0, 10.0 );
+}
+
/**
* Creates a benchmark function.
*
@@ -38,17 +53,7 @@ var nanmeanpn = require( './../lib/nanmeanpn.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
- var x;
- var i;
-
- x = [];
- for ( i = 0; i < len; i++ ) {
- if ( randu() < 0.2 ) {
- x.push( NaN );
- } else {
- x.push( ( randu()*20.0 ) - 10.0 );
- }
- }
+ var x = filledarrayBy( len, 'generic', rand );
return benchmark;
function benchmark( b ) {
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/benchmark/benchmark.ndarray.js b/lib/node_modules/@stdlib/stats/base/nanmeanpn/benchmark/benchmark.ndarray.js
index 33a36b8ecc9c..6c58f0e7f66b 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/benchmark/benchmark.ndarray.js
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/benchmark/benchmark.ndarray.js
@@ -21,7 +21,9 @@
// MODULES //
var bench = require( '@stdlib/bench' );
-var randu = require( '@stdlib/random/base/randu' );
+var uniform = require( '@stdlib/random/base/uniform' );
+var bernoulli = require( '@stdlib/random/base/bernoulli' );
+var filledarrayBy = require( '@stdlib/array/filled-by' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var pkg = require( './../package.json' ).name;
@@ -30,6 +32,19 @@ var nanmeanpn = require( './../lib/ndarray.js' );
// FUNCTIONS //
+/**
+* Returns a random value or `NaN`.
+*
+* @private
+* @returns {number} random number or `NaN`
+*/
+function rand() {
+ if ( bernoulli( 0.8 ) < 1 ) {
+ return NaN;
+ }
+ return uniform( -10.0, 10.0 );
+}
+
/**
* Creates a benchmark function.
*
@@ -38,17 +53,7 @@ var nanmeanpn = require( './../lib/ndarray.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
- var x;
- var i;
-
- x = [];
- for ( i = 0; i < len; i++ ) {
- if ( randu() < 0.2 ) {
- x.push( NaN );
- } else {
- x.push( ( randu()*20.0 ) - 10.0 );
- }
- }
+ var x = filledarrayBy( len, 'generic', rand );
return benchmark;
function benchmark( b ) {
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/repl.txt b/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/repl.txt
index c0982525c1af..38744d4f7987 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/repl.txt
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/repl.txt
@@ -1,10 +1,10 @@
-{{alias}}( N, x, stride )
+{{alias}}( N, x, strideX )
Computes the arithmetic mean of a strided array, ignoring `NaN` values and
using a two-pass error correction algorithm.
- The `N` and `stride` parameters determine which elements in `x` are accessed
- at runtime.
+ The `N` and stride parameters determine which elements in the strided array
+ are accessed at runtime.
Indexing is relative to the first index. To introduce an offset, use a typed
array view.
@@ -21,8 +21,8 @@
x: Array|TypedArray
Input array.
- stride: integer
- Index increment.
+ strideX: integer
+ Stride length.
Returns
-------
@@ -33,25 +33,22 @@
--------
// Standard Usage:
> var x = [ 1.0, -2.0, NaN, 2.0 ];
- > {{alias}}( x.length, x, 1 )
+ > {{alias}}( 4, x, 1 )
~0.3333
- // Using `N` and `stride` parameters:
+ // Using `N` and stride parameters:
> x = [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0, NaN ];
- > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
- > var stride = 2;
- > {{alias}}( N, x, stride )
+ > {{alias}}( 3, x, 2 )
~0.3333
// Using view offsets:
> var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN ] );
> var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
- > N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
- > stride = 2;
- > {{alias}}( N, x1, stride )
+ > {{alias}}( 3, x1, 2 )
~-0.3333
-{{alias}}.ndarray( N, x, stride, offset )
+
+{{alias}}.ndarray( N, x, strideX, offsetX )
Computes the arithmetic mean of a strided array, ignoring `NaN` values and
using a two-pass error correction algorithm and alternative indexing
semantics.
@@ -68,10 +65,10 @@
x: Array|TypedArray
Input array.
- stride: integer
- Index increment.
+ strideX: integer
+ Stride length.
- offset: integer
+ offsetX: integer
Starting index.
Returns
@@ -83,13 +80,12 @@
--------
// Standard Usage:
> var x =[ 1.0, -2.0, NaN, 2.0 ];
- > {{alias}}.ndarray( x.length, x, 1, 0 )
+ > {{alias}}.ndarray( 4, x, 1, 0 )
~0.3333
// Using offset parameter:
> var x = [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN ];
- > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
- > {{alias}}.ndarray( N, x, 2, 1 )
+ > {{alias}}.ndarray( 3, x, 2, 1 )
~-0.3333
See Also
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/types/index.d.ts b/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/types/index.d.ts
index 1a71ed0d573b..dd602f218912 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/types/index.d.ts
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/types/index.d.ts
@@ -20,7 +20,12 @@
///
-import { NumericArray } from '@stdlib/types/array';
+import { NumericArray, Collection, AccessorArrayLike } from '@stdlib/types/array';
+
+/**
+* Input array.
+*/
+type InputArray = NumericArray | Collection | AccessorArrayLike;
/**
* Interface describing `nanmeanpn`.
@@ -31,7 +36,7 @@ interface Routine {
*
* @param N - number of indexed elements
* @param x - input array
- * @param stride - stride length
+ * @param strideX - stride length
* @returns arithmetic mean
*
* @example
@@ -40,15 +45,15 @@ interface Routine {
* var v = nanmeanpn( x.length, x, 1 );
* // returns ~0.3333
*/
- ( N: number, x: NumericArray, stride: number ): number;
+ ( N: number, x: InputArray, strideX: number ): number;
/**
* Computes the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm and alternative indexing semantics.
*
* @param N - number of indexed elements
* @param x - input array
- * @param stride - stride length
- * @param offset - starting index
+ * @param strideX - stride length
+ * @param offsetX - starting index
* @returns arithmetic mean
*
* @example
@@ -57,7 +62,7 @@ interface Routine {
* var v = nanmeanpn.ndarray( x.length, x, 1, 0 );
* // returns ~0.3333
*/
- ndarray( N: number, x: NumericArray, stride: number, offset: number ): number;
+ ndarray( N: number, x: InputArray, strideX: number, offsetX: number ): number;
}
/**
@@ -65,7 +70,7 @@ interface Routine {
*
* @param N - number of indexed elements
* @param x - input array
-* @param stride - stride length
+* @param strideX - stride length
* @returns arithmetic mean
*
* @example
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/types/test.ts b/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/types/test.ts
index ff5d63254cde..57ab036104fa 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/types/test.ts
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/docs/types/test.ts
@@ -16,6 +16,7 @@
* limitations under the License.
*/
+import AccessorArray = require( '@stdlib/array/base/accessor' );
import nanmeanpn = require( './index' );
@@ -26,6 +27,7 @@ import nanmeanpn = require( './index' );
const x = new Float64Array( 10 );
nanmeanpn( x.length, x, 1 ); // $ExpectType number
+ nanmeanpn( x.length, new AccessorArray( x ), 1 ); // $ExpectType number
}
// The compiler throws an error if the function is provided a first argument which is not a number...
@@ -85,6 +87,7 @@ import nanmeanpn = require( './index' );
const x = new Float64Array( 10 );
nanmeanpn.ndarray( x.length, x, 1, 0 ); // $ExpectType number
+ nanmeanpn.ndarray( x.length, new AccessorArray( x ), 1, 0 ); // $ExpectType number
}
// The compiler throws an error if the `ndarray` method is provided a first argument which is not a number...
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/examples/index.js b/lib/node_modules/@stdlib/stats/base/nanmeanpn/examples/index.js
index ed9f17951022..293b4d4fcbe0 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/examples/index.js
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/examples/index.js
@@ -18,22 +18,19 @@
'use strict';
-var randu = require( '@stdlib/random/base/randu' );
-var round = require( '@stdlib/math/base/special/round' );
-var Float64Array = require( '@stdlib/array/float64' );
+var uniform = require( '@stdlib/random/base/uniform' );
+var filledarrayBy = require( '@stdlib/array/filled-by' );
+var bernoulli = require( '@stdlib/random/base/bernoulli' );
var nanmeanpn = require( './../lib' );
-var x;
-var i;
-
-x = new Float64Array( 10 );
-for ( i = 0; i < x.length; i++ ) {
- if ( randu() < 0.2 ) {
- x[ i ] = NaN;
- } else {
- x[ i ] = round( (randu()*100.0) - 50.0 );
+function rand() {
+ if ( bernoulli( 0.8 ) > 1 ) {
+ return NaN;
}
+ return uniform( -50.0, 50.0 );
}
+
+var x = filledarrayBy( 10, 'generic', rand );
console.log( x );
var v = nanmeanpn( x.length, x, 1 );
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/nanmeanpn.js b/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/accessors.js
similarity index 67%
rename from lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/nanmeanpn.js
rename to lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/accessors.js
index d100a5198038..c3e8e687a3a5 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/nanmeanpn.js
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/accessors.js
@@ -1,7 +1,7 @@
/**
* @license Apache-2.0
*
-* Copyright (c) 2020 The Stdlib Authors.
+* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -33,49 +33,53 @@
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param {PositiveInteger} N - number of indexed elements
-* @param {NumericArray} x - input array
-* @param {integer} stride - stride length
+* @param {Object} x - input array object
+* @param {Collection} x.data - input array data
+* @param {Array} x.accessors - array element accessors
+* @param {integer} strideX - stride length
+* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} arithmetic mean
*
* @example
-* var x = [ 1.0, -2.0, NaN, 2.0 ];
-* var N = x.length;
+* var toAccessorArray = require( '@stdlib/array/base/to-accessor-array' );
+* var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
*
-* var v = nanmeanpn( N, x, 1 );
-* // returns ~0.3333
+* var x = toAccessorArray( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
+*
+* var v = nanmeanpn( 4, arraylike2object( x ), 2, 1 );
+* // returns 1.25
*/
-function nanmeanpn( N, x, stride ) {
+function nanmeanpn( N, x, strideX, offsetX ) {
+ var xbuf;
+ var xget;
var ix;
var v;
var s;
var t;
var n;
var i;
- var o;
- if ( N <= 0 ) {
- return NaN;
- }
- if ( N === 1 || stride === 0 ) {
- return x[ 0 ];
- }
- if ( stride < 0 ) {
- ix = (1-N) * stride;
- } else {
- ix = 0;
+ // Cache references to array data:
+ xbuf = x.data;
+
+ // Cache references to element accessors:
+ xget = x.accessors[ 0 ];
+
+ if ( N === 1 || strideX === 0 ) {
+ return xget( xbuf, offsetX );
}
- o = ix;
+ ix = offsetX;
// Compute an estimate for the mean...
s = 0.0;
n = 0;
for ( i = 0; i < N; i++ ) {
- v = x[ ix ];
+ v = xget( xbuf, ix );
if ( v === v ) {
n += 1;
s += v;
}
- ix += stride;
+ ix += strideX;
}
if ( n === 0 ) {
return NaN;
@@ -83,14 +87,14 @@ function nanmeanpn( N, x, stride ) {
s /= n;
// Compute an error term...
+ ix = offsetX;
t = 0.0;
- ix = o;
for ( i = 0; i < N; i++ ) {
- v = x[ ix ];
+ v = xget( xbuf, ix );
if ( v === v ) {
t += v - s;
}
- ix += stride;
+ ix += strideX;
}
return s + (t/n);
}
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/index.js b/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/index.js
index a02684ec4b69..b47729de96db 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/index.js
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/index.js
@@ -27,25 +27,29 @@
* var nanmeanpn = require( '@stdlib/stats/base/nanmeanpn' );
*
* var x = [ 1.0, -2.0, NaN, 2.0 ];
-* var N = x.length;
*
-* var v = nanmeanpn( N, x, 1 );
+* var v = nanmeanpn( 4, x, 1 );
* // returns ~0.3333
*
* @example
-* var floor = require( '@stdlib/math/base/special/floor' );
* var nanmeanpn = require( '@stdlib/stats/base/nanmeanpn' );
*
* var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ];
-* var N = floor( x.length / 2 );
*
-* var v = nanmeanpn.ndarray( N, x, 2, 1 );
+* var v = nanmeanpn.ndarray( 4, x, 2, 1 );
* // returns 1.25
*/
// MODULES //
+var setReadOnly = require( '@stdlib/utils/define-nonenumerable-read-only-property' );
var main = require( './main.js' );
+var ndarray = require( './ndarray.js' );
+
+
+// MAIN //
+
+setReadOnly( main, 'ndarray', ndarray );
// EXPORTS //
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/main.js b/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/main.js
index ef999d8428a5..7c161bff3390 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/main.js
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/main.js
@@ -20,14 +20,38 @@
// MODULES //
-var setReadOnly = require( '@stdlib/utils/define-nonenumerable-read-only-property' );
-var nanmeanpn = require( './nanmeanpn.js' );
+var stride2offset = require( '@stdlib/strided/base/stride2offset' );
var ndarray = require( './ndarray.js' );
// MAIN //
-setReadOnly( nanmeanpn, 'ndarray', ndarray );
+/**
+* Computes the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
+*
+* ## Method
+*
+* - This implementation uses a two-pass approach, as suggested by Neely (1966).
+*
+* ## References
+*
+* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
+* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
+*
+* @param {PositiveInteger} N - number of indexed elements
+* @param {NumericArray} x - input array
+* @param {integer} strideX - stride length
+* @returns {number} arithmetic mean
+*
+* @example
+* var x = [ 1.0, -2.0, NaN, 2.0 ];
+*
+* var v = nanmeanpn( 4, x, 1 );
+* // returns ~0.3333
+*/
+function nanmeanpn( N, x, strideX ) {
+ return ndarray( N, x, strideX, stride2offset( N, strideX ) );
+}
// EXPORTS //
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/ndarray.js b/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/ndarray.js
index c3ea7b575822..8df6800f993b 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/ndarray.js
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/lib/ndarray.js
@@ -18,6 +18,12 @@
'use strict';
+// MODULES //
+
+var arraylike2object = require( '@stdlib/array/base/arraylike2object' );
+var accessors = require( './accessors.js' );
+
+
// MAIN //
/**
@@ -34,34 +40,36 @@
*
* @param {PositiveInteger} N - number of indexed elements
* @param {NumericArray} x - input array
-* @param {integer} stride - stride length
-* @param {NonNegativeInteger} offset - starting index
+* @param {integer} strideX - stride length
+* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} arithmetic mean
*
* @example
-* var floor = require( '@stdlib/math/base/special/floor' );
-*
* var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ];
-* var N = floor( x.length / 2 );
*
-* var v = nanmeanpn( N, x, 2, 1 );
+* var v = nanmeanpn( 4, x, 2, 1 );
* // returns 1.25
*/
-function nanmeanpn( N, x, stride, offset ) {
+function nanmeanpn( N, x, strideX, offsetX ) {
var ix;
var v;
var s;
var t;
var n;
var i;
+ var o;
if ( N <= 0 ) {
return NaN;
}
- if ( N === 1 || stride === 0 ) {
- return x[ offset ];
+ o = arraylike2object( x );
+ if ( o.accessorProtocol ) {
+ return accessors( N, o, strideX, offsetX );
+ }
+ if ( N === 1 || strideX === 0 ) {
+ return x[ offsetX ];
}
- ix = offset;
+ ix = offsetX;
// Compute an estimate for the mean...
s = 0.0;
@@ -72,7 +80,7 @@ function nanmeanpn( N, x, stride, offset ) {
n += 1;
s += v;
}
- ix += stride;
+ ix += strideX;
}
if ( n === 0 ) {
return NaN;
@@ -80,14 +88,14 @@ function nanmeanpn( N, x, stride, offset ) {
s /= n;
// Compute an error term...
- ix = offset;
+ ix = offsetX;
t = 0.0;
for ( i = 0; i < N; i++ ) {
v = x[ ix ];
if ( v === v ) {
t += v - s;
}
- ix += stride;
+ ix += strideX;
}
return s + (t/n);
}
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/test/test.nanmeanpn.js b/lib/node_modules/@stdlib/stats/base/nanmeanpn/test/test.main.js
similarity index 61%
rename from lib/node_modules/@stdlib/stats/base/nanmeanpn/test/test.nanmeanpn.js
rename to lib/node_modules/@stdlib/stats/base/nanmeanpn/test/test.main.js
index 2176c2aef076..8d2e5b374737 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/test/test.nanmeanpn.js
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/test/test.main.js
@@ -21,10 +21,10 @@
// MODULES //
var tape = require( 'tape' );
-var floor = require( '@stdlib/math/base/special/floor' );
+var toAccessorArray = require( '@stdlib/array/base/to-accessor-array' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var Float64Array = require( '@stdlib/array/float64' );
-var nanmeanpn = require( './../lib/nanmeanpn.js' );
+var nanmeanpn = require( './../lib/main.js' );
// TESTS //
@@ -62,6 +62,28 @@ tape( 'the function calculates the arithmetic mean of a strided array', function
t.end();
});
+tape( 'the function calculates the arithmetic mean of a strided array (accessors)', function test( t ) {
+ var x;
+ var v;
+
+ x = [ 1.0, -2.0, -4.0, 5.0, NaN, 0.0, 3.0 ];
+
+ v = nanmeanpn( x.length, toAccessorArray( x ), 1 );
+ t.strictEqual( v, 0.5, 'returns expected value' );
+
+ x = [ -4.0, NaN ];
+
+ v = nanmeanpn( x.length, toAccessorArray( x ), 1 );
+ t.strictEqual( v, -4.0, 'returns expected value' );
+
+ x = [ NaN, NaN ];
+
+ v = nanmeanpn( x.length, toAccessorArray( x ), 1 );
+ t.strictEqual( isnan( v ), true, 'returns expected value' );
+
+ t.end();
+});
+
tape( 'if provided an `N` parameter less than or equal to `0`, the function returns `NaN`', function test( t ) {
var x;
var v;
@@ -90,7 +112,6 @@ tape( 'if provided an `N` parameter equal to `1`, the function returns the first
});
tape( 'the function supports a `stride` parameter', function test( t ) {
- var N;
var x;
var v;
@@ -107,15 +128,36 @@ tape( 'the function supports a `stride` parameter', function test( t ) {
NaN
];
- N = floor( x.length / 2 );
- v = nanmeanpn( N, x, 2 );
+ v = nanmeanpn( 5, x, 2 );
+
+ t.strictEqual( v, 1.25, 'returns expected value' );
+ t.end();
+});
+
+tape( 'the function supports a `stride` parameter (accessor)', function test( t ) {
+ var x;
+ var v;
+
+ x = [
+ 1.0, // 0
+ 2.0,
+ 2.0, // 1
+ -7.0,
+ -2.0, // 2
+ 3.0,
+ 4.0, // 3
+ 2.0,
+ NaN, // 4
+ NaN
+ ];
+
+ v = nanmeanpn( 5, toAccessorArray( x ), 2 );
t.strictEqual( v, 1.25, 'returns expected value' );
t.end();
});
tape( 'the function supports a negative `stride` parameter', function test( t ) {
- var N;
var x;
var v;
@@ -132,8 +174,30 @@ tape( 'the function supports a negative `stride` parameter', function test( t )
NaN
];
- N = floor( x.length / 2 );
- v = nanmeanpn( N, x, -2 );
+ v = nanmeanpn( 5, x, -2 );
+
+ t.strictEqual( v, 1.25, 'returns expected value' );
+ t.end();
+});
+
+tape( 'the function supports a negative `stride` parameter (accessors)', function test( t ) {
+ var x;
+ var v;
+
+ x = [
+ 1.0, // 4
+ 2.0,
+ 2.0, // 3
+ -7.0,
+ -2.0, // 2
+ 3.0,
+ 4.0, // 1
+ 2.0,
+ NaN, // 0
+ NaN
+ ];
+
+ v = nanmeanpn( 5, toAccessorArray( x ), -2 );
t.strictEqual( v, 1.25, 'returns expected value' );
t.end();
@@ -151,10 +215,21 @@ tape( 'if provided a `stride` parameter equal to `0`, the function returns the f
t.end();
});
+tape( 'if provided a `stride` parameter equal to `0`, the function returns the first element (accessors)', function test( t ) {
+ var x;
+ var v;
+
+ x = [ 1.0, -2.0, -4.0, 5.0, 3.0 ];
+
+ v = nanmeanpn( x.length, toAccessorArray( x ), 0 );
+ t.strictEqual( v, 1.0, 'returns expected value' );
+
+ t.end();
+});
+
tape( 'the function supports view offsets', function test( t ) {
var x0;
var x1;
- var N;
var v;
x0 = new Float64Array([
@@ -172,9 +247,35 @@ tape( 'the function supports view offsets', function test( t ) {
]);
x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
- N = floor(x1.length / 2);
- v = nanmeanpn( N, x1, 2 );
+ v = nanmeanpn( 5, x1, 2 );
+ t.strictEqual( v, 1.25, 'returns expected value' );
+
+ t.end();
+});
+
+tape( 'the function supports view offsets (accessors)', function test( t ) {
+ var x0;
+ var x1;
+ var v;
+
+ x0 = new Float64Array([
+ 2.0,
+ 1.0, // 0
+ 2.0,
+ -2.0, // 1
+ -2.0,
+ 2.0, // 2
+ 3.0,
+ 4.0, // 3
+ 6.0,
+ NaN, // 4
+ NaN
+ ]);
+
+ x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
+
+ v = nanmeanpn( 5, toAccessorArray( x1 ), 2 );
t.strictEqual( v, 1.25, 'returns expected value' );
t.end();
diff --git a/lib/node_modules/@stdlib/stats/base/nanmeanpn/test/test.ndarray.js b/lib/node_modules/@stdlib/stats/base/nanmeanpn/test/test.ndarray.js
index c491fb88a624..d79cba633591 100644
--- a/lib/node_modules/@stdlib/stats/base/nanmeanpn/test/test.ndarray.js
+++ b/lib/node_modules/@stdlib/stats/base/nanmeanpn/test/test.ndarray.js
@@ -21,7 +21,7 @@
// MODULES //
var tape = require( 'tape' );
-var floor = require( '@stdlib/math/base/special/floor' );
+var toAccessorArray = require( '@stdlib/array/base/to-accessor-array' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var nanmeanpn = require( './../lib/ndarray.js' );
@@ -61,6 +61,28 @@ tape( 'the function calculates the arithmetic mean of a strided array', function
t.end();
});
+tape( 'the function calculates the arithmetic mean of a strided array (accessors)', function test( t ) {
+ var x;
+ var v;
+
+ x = [ 1.0, -2.0, -4.0, 5.0, NaN, 0.0, 3.0 ];
+
+ v = nanmeanpn( x.length, toAccessorArray( x ), 1, 0 );
+ t.strictEqual( v, 0.5, 'returns expected value' );
+
+ x = [ -4.0, NaN ];
+
+ v = nanmeanpn( x.length, toAccessorArray( x ), 1, 0 );
+ t.strictEqual( v, -4.0, 'returns expected value' );
+
+ x = [ NaN, NaN ];
+
+ v = nanmeanpn( x.length, toAccessorArray( x ), 1, 0 );
+ t.strictEqual( isnan( v ), true, 'returns expected value' );
+
+ t.end();
+});
+
tape( 'if provided an `N` parameter less than or equal to `0`, the function returns `NaN`', function test( t ) {
var x;
var v;
@@ -89,7 +111,6 @@ tape( 'if provided an `N` parameter equal to `1`, the function returns the first
});
tape( 'the function supports a `stride` parameter', function test( t ) {
- var N;
var x;
var v;
@@ -106,15 +127,36 @@ tape( 'the function supports a `stride` parameter', function test( t ) {
NaN
];
- N = floor( x.length / 2 );
- v = nanmeanpn( N, x, 2, 0 );
+ v = nanmeanpn( 5, x, 2, 0 );
+
+ t.strictEqual( v, 1.25, 'returns expected value' );
+ t.end();
+});
+
+tape( 'the function supports a `stride` parameter (accessors)', function test( t ) {
+ var x;
+ var v;
+
+ x = [
+ 1.0, // 0
+ 2.0,
+ 2.0, // 1
+ -7.0,
+ -2.0, // 2
+ 3.0,
+ 4.0, // 3
+ 2.0,
+ NaN, // 4
+ NaN
+ ];
+
+ v = nanmeanpn( 5, toAccessorArray( x ), 2, 0 );
t.strictEqual( v, 1.25, 'returns expected value' );
t.end();
});
tape( 'the function supports a negative `stride` parameter', function test( t ) {
- var N;
var x;
var v;
@@ -131,8 +173,30 @@ tape( 'the function supports a negative `stride` parameter', function test( t )
NaN
];
- N = floor( x.length / 2 );
- v = nanmeanpn( N, x, -2, 8 );
+ v = nanmeanpn( 5, x, -2, 8 );
+
+ t.strictEqual( v, 1.25, 'returns expected value' );
+ t.end();
+});
+
+tape( 'the function supports a negative `stride` parameter (accessors)', function test( t ) {
+ var x;
+ var v;
+
+ x = [
+ 1.0, // 4
+ 2.0,
+ 2.0, // 3
+ -7.0,
+ -2.0, // 2
+ 3.0,
+ 4.0, // 1
+ 2.0,
+ NaN, // 0
+ NaN
+ ];
+
+ v = nanmeanpn( 5, toAccessorArray( x ), -2, 8 );
t.strictEqual( v, 1.25, 'returns expected value' );
t.end();
@@ -150,8 +214,19 @@ tape( 'if provided a `stride` parameter equal to `0`, the function returns the f
t.end();
});
+tape( 'if provided a `stride` parameter equal to `0`, the function returns the first indexed element (accessors)', function test( t ) {
+ var x;
+ var v;
+
+ x = [ 1.0, -2.0, -4.0, 5.0, 3.0 ];
+
+ v = nanmeanpn( x.length, toAccessorArray( x ), 0, 0 );
+ t.strictEqual( v, 1.0, 'returns expected value' );
+
+ t.end();
+});
+
tape( 'the function supports an `offset` parameter', function test( t ) {
- var N;
var x;
var v;
@@ -167,9 +242,31 @@ tape( 'the function supports an `offset` parameter', function test( t ) {
NaN,
NaN // 4
];
- N = floor( x.length / 2 );
- v = nanmeanpn( N, x, 2, 1 );
+ v = nanmeanpn( 5, x, 2, 1 );
+ t.strictEqual( v, 1.25, 'returns expected value' );
+
+ t.end();
+});
+
+tape( 'the function supports an `offset` parameter (accessors)', function test( t ) {
+ var x;
+ var v;
+
+ x = [
+ 2.0,
+ 1.0, // 0
+ 2.0,
+ -2.0, // 1
+ -2.0,
+ 2.0, // 2
+ 3.0,
+ 4.0, // 3
+ NaN,
+ NaN // 4
+ ];
+
+ v = nanmeanpn( 5, toAccessorArray( x ), 2, 1 );
t.strictEqual( v, 1.25, 'returns expected value' );
t.end();