diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index 659c3487efab..734bccb0855c 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -71,58 +71,16 @@ The namespace contains the following statistical functions:
- [`dmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask.
- [`dmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask.
- [`dmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskrange]: calculate the range of a double-precision floating-point strided array according to a mask.
-- [`dnanmeanpw( N, x, strideX )`][@stdlib/stats/strided/dnanmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.
-- [`dnanmeanwd( N, x, strideX )`][@stdlib/stats/strided/dnanmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values.
-- [`dnanminabs( N, x, strideX )`][@stdlib/stats/strided/dnanminabs]: calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.
- [`dnanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]: calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
-- [`dnanrange( N, x, strideX )`][@stdlib/stats/strided/dnanrange]: calculate the range of a double-precision floating-point strided array, ignoring `NaN` values.
- [`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.
-- [`dnanstdevch( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevch]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
-- [`dnanstdevpn( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevpn]: calculate the standard deviation of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass algorithm.
-- [`dnanstdevtk( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevtk]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
-- [`dnanstdevwd( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevwd]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
-- [`dnanstdevyc( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevyc]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
-- [`dnanvariance( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariance]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.
-- [`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariancech]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
-- [`dnanvariancepn( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariancepn]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
-- [`dnanvariancetk( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariancetk]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
-- [`dnanvariancewd( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariancewd]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
-- [`dnanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvarianceyc]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
-- [`drange( N, x, strideX )`][@stdlib/stats/strided/drange]: calculate the range of a double-precision floating-point strided array.
- [`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array.
-- [`dsemch( N, correction, x, strideX )`][@stdlib/stats/strided/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
- [`dsempn( N, correction, x, stride )`][@stdlib/stats/base/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.
-- [`dsemtk( N, correction, x, strideX )`][@stdlib/stats/strided/dsemtk]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.
-- [`dsemwd( N, correction, x, strideX )`][@stdlib/stats/strided/dsemwd]: calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.
-- [`dsemyc( N, correction, x, strideX )`][@stdlib/stats/strided/dsemyc]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
-- [`dsmean( N, x, strideX )`][@stdlib/stats/strided/dsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.
- [`dsmeanors( N, x, strideX )`][@stdlib/stats/base/dsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.
-- [`dsmeanpn( N, x, strideX )`][@stdlib/stats/strided/dsmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.
-- [`dsmeanpw( N, x, strideX )`][@stdlib/stats/strided/dsmeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.
-- [`dsmeanwd( N, x, strideX )`][@stdlib/stats/strided/dsmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.
-- [`dsnanmean( N, x, strideX )`][@stdlib/stats/strided/dsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.
-- [`dsnanmeanors( N, x, strideX )`][@stdlib/stats/strided/dsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
-- [`dsnanmeanpn( N, x, strideX )`][@stdlib/stats/strided/dsnanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.
-- [`dsnanmeanwd( N, x, strideX )`][@stdlib/stats/strided/dsnanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.
- [`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]: calculate the standard deviation of a double-precision floating-point strided array.
-- [`dstdevch( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevch]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.
-- [`dstdevpn( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevpn]: calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.
-- [`dstdevtk( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevtk]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.
-- [`dstdevwd( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevwd]: calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.
-- [`dstdevyc( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevyc]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
-- [`dsvariance( N, correction, x, strideX )`][@stdlib/stats/strided/dsvariance]: calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.
-- [`dsvariancepn( N, correction, x, strideX )`][@stdlib/stats/strided/dsvariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.
-- [`dvariance( N, correction, x, strideX )`][@stdlib/stats/strided/dvariance]: calculate the variance of a double-precision floating-point strided array.
-- [`dvariancech( N, correction, x, strideX )`][@stdlib/stats/strided/dvariancech]: calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.
-- [`dvariancepn( N, correction, x, strideX )`][@stdlib/stats/strided/dvariancepn]: calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.
-- [`dvariancetk( N, correction, x, strideX )`][@stdlib/stats/strided/dvariancetk]: calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.
-- [`dvariancewd( N, correction, x, strideX )`][@stdlib/stats/strided/dvariancewd]: calculate the variance of a double-precision floating-point strided array using Welford's algorithm.
-- [`dvarianceyc( N, correction, x, strideX )`][@stdlib/stats/strided/dvarianceyc]: calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
- [`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]: calculate the variance of a double-precision floating-point strided array provided a known mean.
- [`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.
-- [`dvarmtk( N, mean, correction, x, strideX )`][@stdlib/stats/strided/dvarmtk]: calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.
- [`maxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/max-by]: calculate the maximum value of a strided array via a callback function.
- [`max( N, x, strideX )`][@stdlib/stats/base/max]: calculate the maximum value of a strided array.
- [`maxabs( N, x, strideX )`][@stdlib/stats/base/maxabs]: calculate the maximum absolute value of a strided array.
@@ -171,47 +129,19 @@ The namespace contains the following statistical functions:
- [`nanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/nanvarianceyc]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
- [`rangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/range-by]: calculate the range of a strided array via a callback function.
- [`range( N, x, stride )`][@stdlib/stats/base/range]: calculate the range of a strided array.
-- [`scumax( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scumax]: calculate the cumulative maximum of single-precision floating-point strided array elements.
-- [`scumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scumaxabs]: calculate the cumulative maximum absolute value of single-precision floating-point strided array elements.
-- [`scumin( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scumin]: calculate the cumulative minimum of single-precision floating-point strided array elements.
-- [`scuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scuminabs]: calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.
-- [`sdsmean( N, x, strideX )`][@stdlib/stats/strided/sdsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation.
-- [`sdsmeanors( N, x, strideX )`][@stdlib/stats/strided/sdsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.
- [`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation.
- [`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation.
-- [`smax( N, x, strideX )`][@stdlib/stats/strided/smax]: calculate the maximum value of a single-precision floating-point strided array.
-- [`smaxabs( N, x, strideX )`][@stdlib/stats/strided/smaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array.
-- [`smaxabssorted( N, x, strideX )`][@stdlib/stats/strided/smaxabssorted]: calculate the maximum absolute value of a sorted single-precision floating-point strided array.
-- [`smaxsorted( N, x, stride )`][@stdlib/stats/strided/smaxsorted]: calculate the maximum value of a sorted single-precision floating-point strided array.
- [`smean( N, x, stride )`][@stdlib/stats/base/smean]: calculate the arithmetic mean of a single-precision floating-point strided array.
- [`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]: calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.
- [`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]: calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.
-- [`smeanli( N, x, strideX )`][@stdlib/stats/strided/smeanli]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.
- [`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.
- [`smeanors( N, x, stride )`][@stdlib/stats/base/smeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.
- [`smeanpn( N, x, stride )`][@stdlib/stats/base/smeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.
-- [`smeanpw( N, x, strideX )`][@stdlib/stats/strided/smeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation.
-- [`smeanwd( N, x, strideX )`][@stdlib/stats/strided/smeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.
-- [`smediansorted( N, x, strideX )`][@stdlib/stats/strided/smediansorted]: calculate the median value of a sorted single-precision floating-point strided array.
- [`smidrange( N, x, strideX )`][@stdlib/stats/base/smidrange]: calculate the mid-range of a single-precision floating-point strided array.
-- [`smin( N, x, strideX )`][@stdlib/stats/strided/smin]: calculate the minimum value of a single-precision floating-point strided array.
-- [`sminabs( N, x, strideX )`][@stdlib/stats/strided/sminabs]: calculate the minimum absolute value of a single-precision floating-point strided array.
-- [`sminsorted( N, x, strideX )`][@stdlib/stats/strided/sminsorted]: calculate the minimum value of a sorted single-precision floating-point strided array.
-- [`smskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/smskmax]: calculate the maximum value of a single-precision floating-point strided array according to a mask.
-- [`smskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/smskmin]: calculate the minimum value of a single-precision floating-point strided array according to a mask.
-- [`smskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/smskrange]: calculate the range of a single-precision floating-point strided array according to a mask.
-- [`snanmax( N, x, strideX )`][@stdlib/stats/strided/snanmax]: calculate the maximum value of a single-precision floating-point strided array, ignoring `NaN` values.
-- [`snanmaxabs( N, x, strideX )`][@stdlib/stats/strided/snanmaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.
- [`snanmean( N, x, stride )`][@stdlib/stats/base/snanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values.
-- [`snanmeanors( N, x, strideX )`][@stdlib/stats/strided/snanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.
-- [`snanmeanpn( N, x, strideX )`][@stdlib/stats/strided/snanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
-- [`snanmeanwd( N, x, strideX )`][@stdlib/stats/strided/snanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.
-- [`snanmin( N, x, strideX )`][@stdlib/stats/strided/snanmin]: calculate the minimum value of a single-precision floating-point strided array, ignoring `NaN` values.
-- [`snanminabs( N, x, strideX )`][@stdlib/stats/strided/snanminabs]: calculate the minimum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.
- [`snanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmax]: calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`snanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmin]: calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`snanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskrange]: calculate the range of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.
-- [`snanrange( N, x, strideX )`][@stdlib/stats/strided/snanrange]: calculate the range of a single-precision floating-point strided array, ignoring `NaN` values.
- [`snanstdev( N, correction, x, stride )`][@stdlib/stats/base/snanstdev]: calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values.
- [`snanstdevch( N, correction, x, stride )`][@stdlib/stats/base/snanstdevch]: calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
- [`snanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/snanstdevpn]: calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
@@ -224,13 +154,8 @@ The namespace contains the following statistical functions:
- [`snanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/snanvariancetk]: calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
- [`snanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/snanvariancewd]: calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
- [`snanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/snanvarianceyc]: calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
-- [`srange( N, x, strideX )`][@stdlib/stats/strided/srange]: calculate the range of a single-precision floating-point strided array.
- [`sstdev( N, correction, x, stride )`][@stdlib/stats/base/sstdev]: calculate the standard deviation of a single-precision floating-point strided array.
-- [`sstdevch( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevch]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.
-- [`sstdevpn( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevpn]: calculate the standard deviation of a single-precision floating-point strided array using a two-pass algorithm.
-- [`sstdevtk( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevtk]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.
- [`sstdevwd( N, correction, x, stride )`][@stdlib/stats/base/sstdevwd]: calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm.
-- [`sstdevyc( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevyc]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
- [`stdev( N, correction, x, stride )`][@stdlib/stats/base/stdev]: calculate the standard deviation of a strided array.
- [`stdevch( N, correction, x, stride )`][@stdlib/stats/base/stdevch]: calculate the standard deviation of a strided array using a one-pass trial mean algorithm.
- [`stdevpn( N, correction, x, stride )`][@stdlib/stats/base/stdevpn]: calculate the standard deviation of a strided array using a two-pass algorithm.
@@ -238,7 +163,6 @@ The namespace contains the following statistical functions:
- [`stdevwd( N, correction, x, stride )`][@stdlib/stats/base/stdevwd]: calculate the standard deviation of a strided array using Welford's algorithm.
- [`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]: calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.
- [`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]: calculate the variance of a single-precision floating-point strided array.
-- [`svariancech( N, correction, x, strideX )`][@stdlib/stats/strided/svariancech]: calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.
- [`svariancepn( N, correction, x, strideX )`][@stdlib/stats/base/svariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.
- [`svariancetk( N, correction, x, strideX )`][@stdlib/stats/base/svariancetk]: calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.
- [`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]: calculate the variance of a single-precision floating-point strided array using Welford's algorithm.
@@ -327,110 +251,26 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/dmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dmskrange
-[@stdlib/stats/strided/dnanmeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmeanpw
-
-[@stdlib/stats/strided/dnanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmeanwd
-
-[@stdlib/stats/strided/dnanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanminabs
-
[@stdlib/stats/base/dnanmskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dnanmskmax
[@stdlib/stats/base/dnanmskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dnanmskmin
[@stdlib/stats/base/dnanmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dnanmskrange
-[@stdlib/stats/strided/dnanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanrange
-
[@stdlib/stats/base/dnanstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dnanstdev
-[@stdlib/stats/strided/dnanstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevch
-
-[@stdlib/stats/strided/dnanstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevpn
-
-[@stdlib/stats/strided/dnanstdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevtk
-
-[@stdlib/stats/strided/dnanstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevwd
-
-[@stdlib/stats/strided/dnanstdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevyc
-
-[@stdlib/stats/strided/dnanvariance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariance
-
-[@stdlib/stats/strided/dnanvariancech]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariancech
-
-[@stdlib/stats/strided/dnanvariancepn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariancepn
-
-[@stdlib/stats/strided/dnanvariancetk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariancetk
-
-[@stdlib/stats/strided/dnanvariancewd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariancewd
-
-[@stdlib/stats/strided/dnanvarianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvarianceyc
-
-[@stdlib/stats/strided/drange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/drange
-
[@stdlib/stats/base/dsem]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dsem
-[@stdlib/stats/strided/dsemch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemch
-
[@stdlib/stats/base/dsempn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dsempn
-[@stdlib/stats/strided/dsemtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemtk
-
-[@stdlib/stats/strided/dsemwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemwd
-
-[@stdlib/stats/strided/dsemyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemyc
-
-[@stdlib/stats/strided/dsmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsmean
-
[@stdlib/stats/base/dsmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dsmeanors
-[@stdlib/stats/strided/dsmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsmeanpn
-
-[@stdlib/stats/strided/dsmeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsmeanpw
-
-[@stdlib/stats/strided/dsmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsmeanwd
-
-[@stdlib/stats/strided/dsnanmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsnanmean
-
-[@stdlib/stats/strided/dsnanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsnanmeanors
-
-[@stdlib/stats/strided/dsnanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsnanmeanpn
-
-[@stdlib/stats/strided/dsnanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsnanmeanwd
-
[@stdlib/stats/base/dstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dstdev
-[@stdlib/stats/strided/dstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevch
-
-[@stdlib/stats/strided/dstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevpn
-
-[@stdlib/stats/strided/dstdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevtk
-
-[@stdlib/stats/strided/dstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevwd
-
-[@stdlib/stats/strided/dstdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevyc
-
-[@stdlib/stats/strided/dsvariance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsvariance
-
-[@stdlib/stats/strided/dsvariancepn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsvariancepn
-
-[@stdlib/stats/strided/dvariance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvariance
-
-[@stdlib/stats/strided/dvariancech]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvariancech
-
-[@stdlib/stats/strided/dvariancepn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvariancepn
-
-[@stdlib/stats/strided/dvariancetk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvariancetk
-
-[@stdlib/stats/strided/dvariancewd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvariancewd
-
-[@stdlib/stats/strided/dvarianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvarianceyc
-
[@stdlib/stats/base/dvarm]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dvarm
[@stdlib/stats/base/dvarmpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dvarmpn
-[@stdlib/stats/strided/dvarmtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvarmtk
-
[@stdlib/stats/base/max-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/max-by
[@stdlib/stats/base/max]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/max
@@ -527,88 +367,32 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/range]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/range
-[@stdlib/stats/strided/scumax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scumax
-
-[@stdlib/stats/strided/scumaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scumaxabs
-
-[@stdlib/stats/strided/scumin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scumin
-
-[@stdlib/stats/strided/scuminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scuminabs
-
-[@stdlib/stats/strided/sdsmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sdsmean
-
-[@stdlib/stats/strided/sdsmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sdsmeanors
-
[@stdlib/stats/base/sdsnanmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/sdsnanmean
[@stdlib/stats/base/sdsnanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/sdsnanmeanors
-[@stdlib/stats/strided/smax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smax
-
-[@stdlib/stats/strided/smaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smaxabs
-
-[@stdlib/stats/strided/smaxabssorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smaxabssorted
-
-[@stdlib/stats/strided/smaxsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smaxsorted
-
[@stdlib/stats/base/smean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/smean
[@stdlib/stats/base/smeankbn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/smeankbn
[@stdlib/stats/base/smeankbn2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/smeankbn2
-[@stdlib/stats/strided/smeanli]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smeanli
-
[@stdlib/stats/base/smeanlipw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/smeanlipw
[@stdlib/stats/base/smeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/smeanors
[@stdlib/stats/base/smeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/smeanpn
-[@stdlib/stats/strided/smeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smeanpw
-
-[@stdlib/stats/strided/smeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smeanwd
-
-[@stdlib/stats/strided/smediansorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smediansorted
-
[@stdlib/stats/base/smidrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/smidrange
-[@stdlib/stats/strided/smin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smin
-
-[@stdlib/stats/strided/sminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sminabs
-
-[@stdlib/stats/strided/sminsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sminsorted
-
-[@stdlib/stats/strided/smskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smskmax
-
-[@stdlib/stats/strided/smskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smskmin
-
-[@stdlib/stats/strided/smskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smskrange
-
-[@stdlib/stats/strided/snanmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmax
-
-[@stdlib/stats/strided/snanmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmaxabs
-
[@stdlib/stats/base/snanmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanmean
-[@stdlib/stats/strided/snanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmeanors
-
-[@stdlib/stats/strided/snanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmeanpn
-
-[@stdlib/stats/strided/snanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmeanwd
-
-[@stdlib/stats/strided/snanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmin
-
-[@stdlib/stats/strided/snanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanminabs
-
[@stdlib/stats/base/snanmskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanmskmax
[@stdlib/stats/base/snanmskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanmskmin
[@stdlib/stats/base/snanmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanmskrange
-[@stdlib/stats/strided/snanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanrange
-
[@stdlib/stats/base/snanstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanstdev
[@stdlib/stats/base/snanstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanstdevch
@@ -633,20 +417,10 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/snanvarianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanvarianceyc
-[@stdlib/stats/strided/srange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/srange
-
[@stdlib/stats/base/sstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/sstdev
-[@stdlib/stats/strided/sstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdevch
-
-[@stdlib/stats/strided/sstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdevpn
-
-[@stdlib/stats/strided/sstdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdevtk
-
[@stdlib/stats/base/sstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/sstdevwd
-[@stdlib/stats/strided/sstdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdevyc
-
[@stdlib/stats/base/stdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/stdev
[@stdlib/stats/base/stdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/stdevch
@@ -661,8 +435,6 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/svariance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/svariance
-[@stdlib/stats/strided/svariancech]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/svariancech
-
[@stdlib/stats/base/svariancepn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/svariancepn
[@stdlib/stats/base/svariancetk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/svariancetk