diff --git a/lib/node_modules/@stdlib/blas/base/README.md b/lib/node_modules/@stdlib/blas/base/README.md
index 88282f103e5e..4038f46a4ed9 100644
--- a/lib/node_modules/@stdlib/blas/base/README.md
+++ b/lib/node_modules/@stdlib/blas/base/README.md
@@ -48,7 +48,8 @@ var o = blas;
- [`caxpy( N, alpha, x, strideX, y, strideY )`][@stdlib/blas/base/caxpy]: scale a single-precision complex floating-point vector by a single-precision complex floating-point constant and add the result to a single-precision complex floating-point vector.
- [`ccopy( N, x, strideX, y, strideY )`][@stdlib/blas/base/ccopy]: copy values from one complex single-precision floating-point vector to another complex single-precision floating-point vector.
- [`cscal( N, alpha, x, strideX )`][@stdlib/blas/base/cscal]: scales a single-precision complex floating-point vector by a single-precision complex floating-point constant.
-- [`csrot( N, cx, strideX, cy, strideY, c, s )`][@stdlib/blas/base/csrot]: applies a plane rotation.
+- [`csrot( N, x, strideX, y, strideY, c, s )`][@stdlib/blas/base/csrot]: apply a plane rotation.
+- [`csscal( N, alpha, x, strideX )`][@stdlib/blas/base/csscal]: scale a single-precision complex floating-point vector by a single-precision floating-point constant.
- [`cswap( N, x, strideX, y, strideY )`][@stdlib/blas/base/cswap]: interchange two complex single-precision floating-point vectors.
- [`dasum( N, x, stride )`][@stdlib/blas/base/dasum]: compute the sum of absolute values (_L1_ norm).
- [`daxpy( N, alpha, x, strideX, y, strideY )`][@stdlib/blas/base/daxpy]: multiply a vector `x` by a constant `alpha` and add the result to `y`.
@@ -86,7 +87,7 @@ var o = blas;
- [`sswap( N, x, strideX, y, strideY )`][@stdlib/blas/base/sswap]: interchange two single-precision floating-point vectors.
- [`zaxpy( N, alpha, x, strideX, y, strideY )`][@stdlib/blas/base/zaxpy]: scale a double-precision complex floating-point vector by a double-precision complex floating-point constant and add the result to a double-precision complex floating-point vector.
- [`zcopy( N, x, strideX, y, strideY )`][@stdlib/blas/base/zcopy]: copy values from one complex double-precision floating-point vector to another complex double-precision floating-point vector.
-- [`zdrot( N, zx, strideX, zy, strideY, c, s )`][@stdlib/blas/base/zdrot]: applies a plane rotation.
+- [`zdrot( N, x, strideX, y, strideY, c, s )`][@stdlib/blas/base/zdrot]: apply a plane rotation.
- [`zdscal( N, da, zx, strideZX )`][@stdlib/blas/base/zdscal]: scale a double-precision complex floating-point vector by a double-precision floating-point constant.
- [`zscal( N, alpha, x, strideX )`][@stdlib/blas/base/zscal]: scales a double-precision complex floating-point vector by a double-precision complex floating-point constant.
- [`zswap( N, x, strideX, y, strideY )`][@stdlib/blas/base/zswap]: interchange two complex double-precision floating-point vectors.
@@ -328,6 +329,8 @@ console.log( objectKeys( blas ) );
[@stdlib/blas/base/csrot]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/blas/base/csrot
+[@stdlib/blas/base/csscal]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/blas/base/csscal
+
[@stdlib/blas/base/cswap]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/blas/base/cswap
[@stdlib/blas/base/dasum]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/blas/base/dasum
diff --git a/lib/node_modules/@stdlib/complex/float32/base/README.md b/lib/node_modules/@stdlib/complex/float32/base/README.md
index 44d19ee7e2c4..8ee85ccca8ea 100644
--- a/lib/node_modules/@stdlib/complex/float32/base/README.md
+++ b/lib/node_modules/@stdlib/complex/float32/base/README.md
@@ -61,6 +61,7 @@ The namespace contains the following functions:
- [`identity( z )`][@stdlib/complex/float32/base/identity]: evaluate the identity function of a single-precision complex floating-point number.
- [`mul( z1, z2 )`][@stdlib/complex/float32/base/mul]: multiply two single-precision complex floating-point numbers.
- [`neg( z )`][@stdlib/complex/float32/base/neg]: negate a single-precision complex floating-point number.
+- [`scale( alpha, c )`][@stdlib/complex/float32/base/scale]: scale a single-precision complex floating-point number by a real-valued single-precision floating-point scalar constant.
- [`sub( z1, z2 )`][@stdlib/complex/float32/base/sub]: subtract two single-precision complex floating-point numbers.
@@ -120,6 +121,8 @@ console.log( objectKeys( ns ) );
[@stdlib/complex/float32/base/neg]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/complex/float32/base/neg
+[@stdlib/complex/float32/base/scale]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/complex/float32/base/scale
+
[@stdlib/complex/float32/base/sub]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/complex/float32/base/sub
[@stdlib/complex/float32/base/assert]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/complex/float32/base/assert
diff --git a/lib/node_modules/@stdlib/math/base/special/README.md b/lib/node_modules/@stdlib/math/base/special/README.md
index b801d5119ddd..bbb405a62585 100644
--- a/lib/node_modules/@stdlib/math/base/special/README.md
+++ b/lib/node_modules/@stdlib/math/base/special/README.md
@@ -326,7 +326,7 @@ var fcns = special;
- [`sqrtpi( x )`][@stdlib/math/base/special/sqrtpi]: compute the principal square root of the product of π and a positive number.
- [`tribonacci( n )`][@stdlib/math/base/special/tribonacci]: compute the nth Tribonacci number.
- [`trigamma( x )`][@stdlib/math/base/special/trigamma]: trigamma function.
-- [`wrap( v, min, max )`][@stdlib/math/base/special/wrap]: wrap a value on the half-open interval `[min,max)`.
+- [`wrap( v, min, max )`][@stdlib/math/base/special/wrap]: wrap a value to the half-open interval `[min,max)`.
diff --git a/lib/node_modules/@stdlib/stats/README.md b/lib/node_modules/@stdlib/stats/README.md
index 6a24f4538223..0bd25f25676f 100644
--- a/lib/node_modules/@stdlib/stats/README.md
+++ b/lib/node_modules/@stdlib/stats/README.md
@@ -83,6 +83,13 @@ The namespace further contains functions for computing statistics on arrays as p
+
+
+- [`array`][@stdlib/stats/array]: statistical functions for arrays.
+- [`strided`][@stdlib/stats/strided]: statistical operations for strided arrays.
+
+
+
The `base` sub-namespace contains lower-level statistical functions, including a `dists` namespace containing functions related to a wide assortment of probability distributions.
@@ -165,6 +172,10 @@ console.log( objectKeys( statistics ) );
[@stdlib/stats/base]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base
+[@stdlib/stats/array]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array
+
+[@stdlib/stats/strided]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided
+
[@stdlib/stats/incr]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/incr
[@stdlib/stats/iter]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/iter
diff --git a/lib/node_modules/@stdlib/stats/array/README.md b/lib/node_modules/@stdlib/stats/array/README.md
index 721900e13b59..d0ffecf466a1 100644
--- a/lib/node_modules/@stdlib/stats/array/README.md
+++ b/lib/node_modules/@stdlib/stats/array/README.md
@@ -53,6 +53,27 @@ The namespace exports the following:
+
+
+- [`maxBy( x, clbk[, thisArg] )`][@stdlib/stats/array/max-by]: calculate the maximum value of an array via a callback function.
+- [`max( x )`][@stdlib/stats/array/max]: calculate the maximum value of an array.
+- [`maxabs( x )`][@stdlib/stats/array/maxabs]: calculate the maximum absolute value of an array.
+- [`maxsorted( x )`][@stdlib/stats/array/maxsorted]: calculate the maximum value of a sorted array.
+- [`mean( x )`][@stdlib/stats/array/mean]: calculate the arithmetic mean of an array.
+- [`mediansorted( x )`][@stdlib/stats/array/mediansorted]: calculate the median value of a sorted array.
+- [`minBy( x, clbk[, thisArg] )`][@stdlib/stats/array/min-by]: calculate the minimum value of an array via a callback function.
+- [`min( x )`][@stdlib/stats/array/min]: calculate the minimum value of an array.
+- [`minabs( x )`][@stdlib/stats/array/minabs]: calculate the minimum absolute value of an array.
+- [`minsorted( x )`][@stdlib/stats/array/minsorted]: calculate the minimum value of a sorted array.
+- [`mskmax( x, mask )`][@stdlib/stats/array/mskmax]: calculate the maximum value of an array according to a mask.
+- [`mskmin( x, mask )`][@stdlib/stats/array/mskmin]: calculate the minimum value of an array according to a mask.
+- [`mskrange( x, mask )`][@stdlib/stats/array/mskrange]: calculate the range of an array according to a mask.
+- [`nanmax( x )`][@stdlib/stats/array/nanmax]: calculate the maximum value of an array, ignoring `NaN` values.
+- [`nanmin( x )`][@stdlib/stats/array/nanmin]: calculate the minimum value of an array, ignoring `NaN` values.
+- [`varianceyc( x[, correction] )`][@stdlib/stats/array/varianceyc]: calculate the variance of an array using a one-pass algorithm proposed by Youngs and Cramer.
+
+
+
@@ -100,6 +121,42 @@ console.log( objectKeys( ns ) );
+
+
+[@stdlib/stats/array/max-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/max-by
+
+[@stdlib/stats/array/max]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/max
+
+[@stdlib/stats/array/maxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/maxabs
+
+[@stdlib/stats/array/maxsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/maxsorted
+
+[@stdlib/stats/array/mean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/mean
+
+[@stdlib/stats/array/mediansorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/mediansorted
+
+[@stdlib/stats/array/min-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/min-by
+
+[@stdlib/stats/array/min]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/min
+
+[@stdlib/stats/array/minabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/minabs
+
+[@stdlib/stats/array/minsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/minsorted
+
+[@stdlib/stats/array/mskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/mskmax
+
+[@stdlib/stats/array/mskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/mskmin
+
+[@stdlib/stats/array/mskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/mskrange
+
+[@stdlib/stats/array/nanmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/nanmax
+
+[@stdlib/stats/array/nanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/nanmin
+
+[@stdlib/stats/array/varianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/varianceyc
+
+
+
diff --git a/lib/node_modules/@stdlib/stats/strided/README.md b/lib/node_modules/@stdlib/stats/strided/README.md
index d2ab48686213..abcbb9da8e8b 100644
--- a/lib/node_modules/@stdlib/stats/strided/README.md
+++ b/lib/node_modules/@stdlib/stats/strided/README.md
@@ -53,6 +53,121 @@ The namespace exports the following:
+
+
+- [`dcumax( N, x, strideX, y, strideY )`][@stdlib/stats/strided/dcumax]: calculate the cumulative maximum of double-precision floating-point strided array elements.
+- [`dcumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/strided/dcumaxabs]: calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.
+- [`dcumin( N, x, strideX, y, strideY )`][@stdlib/stats/strided/dcumin]: calculate the cumulative minimum of double-precision floating-point strided array elements.
+- [`dcuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/strided/dcuminabs]: calculate the cumulative minimum absolute value of double-precision floating-point strided array elements.
+- [`dmax( N, x, strideX )`][@stdlib/stats/strided/dmax]: calculate the maximum value of a double-precision floating-point strided array.
+- [`dmaxabs( N, x, strideX )`][@stdlib/stats/strided/dmaxabs]: calculate the maximum absolute value of a double-precision floating-point strided array.
+- [`dmaxabssorted( N, x, strideX )`][@stdlib/stats/strided/dmaxabssorted]: calculate the maximum absolute value of a sorted double-precision floating-point strided array.
+- [`dmaxsorted( N, x, strideX )`][@stdlib/stats/strided/dmaxsorted]: calculate the maximum value of a sorted double-precision floating-point strided array.
+- [`dmeankbn( N, x, strideX )`][@stdlib/stats/strided/dmeankbn]: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.
+- [`dmeankbn2( N, x, strideX )`][@stdlib/stats/strided/dmeankbn2]: calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.
+- [`dmeanli( N, x, strideX )`][@stdlib/stats/strided/dmeanli]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`dmeanlipw( N, x, strideX )`][@stdlib/stats/strided/dmeanlipw]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.
+- [`dmeanors( N, x, strideX )`][@stdlib/stats/strided/dmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.
+- [`dmeanpw( N, x, strideX )`][@stdlib/stats/strided/dmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.
+- [`dmeanwd( N, x, strideX )`][@stdlib/stats/strided/dmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.
+- [`dmediansorted( N, x, strideX )`][@stdlib/stats/strided/dmediansorted]: calculate the median value of a sorted double-precision floating-point strided array.
+- [`dmidrange( N, x, strideX )`][@stdlib/stats/strided/dmidrange]: calculate the mid-range of a double-precision floating-point strided array.
+- [`dmin( N, x, strideX )`][@stdlib/stats/strided/dmin]: calculate the minimum value of a double-precision floating-point strided array.
+- [`dminabs( N, x, strideX )`][@stdlib/stats/strided/dminabs]: calculate the minimum absolute value of a double-precision floating-point strided array.
+- [`dminsorted( N, x, strideX )`][@stdlib/stats/strided/dminsorted]: calculate the minimum value of a sorted double-precision floating-point strided array.
+- [`dmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/dmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask.
+- [`dmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/dmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask.
+- [`dmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/dmskrange]: calculate the range of a double-precision floating-point strided array according to a mask.
+- [`dnanmax( N, x, strideX )`][@stdlib/stats/strided/dnanmax]: calculate the maximum value of a double-precision floating-point strided array, ignoring `NaN` values.
+- [`dnanmaxabs( N, x, strideX )`][@stdlib/stats/strided/dnanmaxabs]: calculate the maximum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.
+- [`dnanmean( N, x, strideX )`][@stdlib/stats/strided/dnanmean]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values.
+- [`dnanmeanors( N, x, strideX )`][@stdlib/stats/strided/dnanmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.
+- [`dnanmeanpn( N, x, strideX )`][@stdlib/stats/strided/dnanmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
+- [`dnanmeanpw( N, x, strideX )`][@stdlib/stats/strided/dnanmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.
+- [`dnanmeanwd( N, x, strideX )`][@stdlib/stats/strided/dnanmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values.
+- [`dnanmin( N, x, strideX )`][@stdlib/stats/strided/dnanmin]: calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values.
+- [`dnanminabs( N, x, strideX )`][@stdlib/stats/strided/dnanminabs]: calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.
+- [`dnanrange( N, x, strideX )`][@stdlib/stats/strided/dnanrange]: calculate the range of a double-precision floating-point strided array, ignoring `NaN` values.
+- [`dnanstdevch( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevch]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
+- [`dnanstdevpn( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevpn]: calculate the standard deviation of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass algorithm.
+- [`dnanstdevtk( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevtk]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
+- [`dnanstdevwd( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevwd]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
+- [`dnanstdevyc( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevyc]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
+- [`dnanvariance( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariance]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.
+- [`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariancech]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
+- [`dnanvariancepn( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariancepn]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
+- [`dnanvariancetk( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariancetk]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
+- [`dnanvariancewd( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariancewd]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
+- [`dnanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvarianceyc]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
+- [`drange( N, x, strideX )`][@stdlib/stats/strided/drange]: calculate the range of a double-precision floating-point strided array.
+- [`dsemch( N, correction, x, strideX )`][@stdlib/stats/strided/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`dsemtk( N, correction, x, strideX )`][@stdlib/stats/strided/dsemtk]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.
+- [`dsemwd( N, correction, x, strideX )`][@stdlib/stats/strided/dsemwd]: calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.
+- [`dsemyc( N, correction, x, strideX )`][@stdlib/stats/strided/dsemyc]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
+- [`dsmean( N, x, strideX )`][@stdlib/stats/strided/dsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.
+- [`dsmeanors( N, x, strideX )`][@stdlib/stats/strided/dsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.
+- [`dsmeanpn( N, x, strideX )`][@stdlib/stats/strided/dsmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.
+- [`dsmeanpw( N, x, strideX )`][@stdlib/stats/strided/dsmeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.
+- [`dsmeanwd( N, x, strideX )`][@stdlib/stats/strided/dsmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.
+- [`dsnanmean( N, x, strideX )`][@stdlib/stats/strided/dsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.
+- [`dsnanmeanors( N, x, strideX )`][@stdlib/stats/strided/dsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
+- [`dsnanmeanpn( N, x, strideX )`][@stdlib/stats/strided/dsnanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.
+- [`dsnanmeanwd( N, x, strideX )`][@stdlib/stats/strided/dsnanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.
+- [`dstdevch( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevch]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`dstdevpn( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevpn]: calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.
+- [`dstdevtk( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevtk]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.
+- [`dstdevwd( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevwd]: calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.
+- [`dstdevyc( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevyc]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
+- [`dsvariance( N, correction, x, strideX )`][@stdlib/stats/strided/dsvariance]: calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.
+- [`dsvariancepn( N, correction, x, strideX )`][@stdlib/stats/strided/dsvariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.
+- [`dvariance( N, correction, x, strideX )`][@stdlib/stats/strided/dvariance]: calculate the variance of a double-precision floating-point strided array.
+- [`dvariancech( N, correction, x, strideX )`][@stdlib/stats/strided/dvariancech]: calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`dvariancepn( N, correction, x, strideX )`][@stdlib/stats/strided/dvariancepn]: calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.
+- [`dvariancetk( N, correction, x, strideX )`][@stdlib/stats/strided/dvariancetk]: calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.
+- [`dvariancewd( N, correction, x, strideX )`][@stdlib/stats/strided/dvariancewd]: calculate the variance of a double-precision floating-point strided array using Welford's algorithm.
+- [`dvarianceyc( N, correction, x, strideX )`][@stdlib/stats/strided/dvarianceyc]: calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
+- [`dvarmtk( N, mean, correction, x, strideX )`][@stdlib/stats/strided/dvarmtk]: calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.
+- [`scumax( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scumax]: calculate the cumulative maximum of single-precision floating-point strided array elements.
+- [`scumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scumaxabs]: calculate the cumulative maximum absolute value of single-precision floating-point strided array elements.
+- [`scumin( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scumin]: calculate the cumulative minimum of single-precision floating-point strided array elements.
+- [`scuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scuminabs]: calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.
+- [`sdsmean( N, x, strideX )`][@stdlib/stats/strided/sdsmean]: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation.
+- [`sdsmeanors( N, x, strideX )`][@stdlib/stats/strided/sdsmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.
+- [`smax( N, x, strideX )`][@stdlib/stats/strided/smax]: calculate the maximum value of a single-precision floating-point strided array.
+- [`smaxabs( N, x, strideX )`][@stdlib/stats/strided/smaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array.
+- [`smaxabssorted( N, x, strideX )`][@stdlib/stats/strided/smaxabssorted]: calculate the maximum absolute value of a sorted single-precision floating-point strided array.
+- [`smaxsorted( N, x, stride )`][@stdlib/stats/strided/smaxsorted]: calculate the maximum value of a sorted single-precision floating-point strided array.
+- [`smeanli( N, x, strideX )`][@stdlib/stats/strided/smeanli]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`smeanpw( N, x, strideX )`][@stdlib/stats/strided/smeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation.
+- [`smeanwd( N, x, strideX )`][@stdlib/stats/strided/smeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.
+- [`smediansorted( N, x, strideX )`][@stdlib/stats/strided/smediansorted]: calculate the median value of a sorted single-precision floating-point strided array.
+- [`smidrange( N, x, strideX )`][@stdlib/stats/strided/smidrange]: calculate the mid-range of a single-precision floating-point strided array.
+- [`smin( N, x, strideX )`][@stdlib/stats/strided/smin]: calculate the minimum value of a single-precision floating-point strided array.
+- [`sminabs( N, x, strideX )`][@stdlib/stats/strided/sminabs]: calculate the minimum absolute value of a single-precision floating-point strided array.
+- [`sminsorted( N, x, strideX )`][@stdlib/stats/strided/sminsorted]: calculate the minimum value of a sorted single-precision floating-point strided array.
+- [`smskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/smskmax]: calculate the maximum value of a single-precision floating-point strided array according to a mask.
+- [`smskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/smskmin]: calculate the minimum value of a single-precision floating-point strided array according to a mask.
+- [`smskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/smskrange]: calculate the range of a single-precision floating-point strided array according to a mask.
+- [`snanmax( N, x, strideX )`][@stdlib/stats/strided/snanmax]: calculate the maximum value of a single-precision floating-point strided array, ignoring `NaN` values.
+- [`snanmaxabs( N, x, strideX )`][@stdlib/stats/strided/snanmaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.
+- [`snanmeanors( N, x, strideX )`][@stdlib/stats/strided/snanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.
+- [`snanmeanpn( N, x, strideX )`][@stdlib/stats/strided/snanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
+- [`snanmeanwd( N, x, strideX )`][@stdlib/stats/strided/snanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.
+- [`snanmin( N, x, strideX )`][@stdlib/stats/strided/snanmin]: calculate the minimum value of a single-precision floating-point strided array, ignoring `NaN` values.
+- [`snanminabs( N, x, strideX )`][@stdlib/stats/strided/snanminabs]: calculate the minimum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.
+- [`snanrange( N, x, strideX )`][@stdlib/stats/strided/snanrange]: calculate the range of a single-precision floating-point strided array, ignoring `NaN` values.
+- [`srange( N, x, strideX )`][@stdlib/stats/strided/srange]: calculate the range of a single-precision floating-point strided array.
+- [`sstdevch( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevch]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`sstdevpn( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevpn]: calculate the standard deviation of a single-precision floating-point strided array using a two-pass algorithm.
+- [`sstdevtk( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevtk]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.
+- [`sstdevyc( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevyc]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
+- [`svariancech( N, correction, x, strideX )`][@stdlib/stats/strided/svariancech]: calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`svariancepn( N, correction, x, strideX )`][@stdlib/stats/strided/svariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.
+- [`svariancetk( N, correction, x, strideX )`][@stdlib/stats/strided/svariancetk]: calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.
+- [`svarianceyc( N, correction, x, strideX )`][@stdlib/stats/strided/svarianceyc]: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
+
+
+
@@ -100,6 +215,230 @@ console.log( objectKeys( ns ) );
+
+
+[@stdlib/stats/strided/dcumax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dcumax
+
+[@stdlib/stats/strided/dcumaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dcumaxabs
+
+[@stdlib/stats/strided/dcumin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dcumin
+
+[@stdlib/stats/strided/dcuminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dcuminabs
+
+[@stdlib/stats/strided/dmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmax
+
+[@stdlib/stats/strided/dmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmaxabs
+
+[@stdlib/stats/strided/dmaxabssorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmaxabssorted
+
+[@stdlib/stats/strided/dmaxsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmaxsorted
+
+[@stdlib/stats/strided/dmeankbn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeankbn
+
+[@stdlib/stats/strided/dmeankbn2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeankbn2
+
+[@stdlib/stats/strided/dmeanli]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeanli
+
+[@stdlib/stats/strided/dmeanlipw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeanlipw
+
+[@stdlib/stats/strided/dmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeanors
+
+[@stdlib/stats/strided/dmeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeanpw
+
+[@stdlib/stats/strided/dmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeanwd
+
+[@stdlib/stats/strided/dmediansorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmediansorted
+
+[@stdlib/stats/strided/dmidrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmidrange
+
+[@stdlib/stats/strided/dmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmin
+
+[@stdlib/stats/strided/dminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dminabs
+
+[@stdlib/stats/strided/dminsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dminsorted
+
+[@stdlib/stats/strided/dmskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmskmax
+
+[@stdlib/stats/strided/dmskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmskmin
+
+[@stdlib/stats/strided/dmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmskrange
+
+[@stdlib/stats/strided/dnanmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmax
+
+[@stdlib/stats/strided/dnanmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmaxabs
+
+[@stdlib/stats/strided/dnanmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmean
+
+[@stdlib/stats/strided/dnanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmeanors
+
+[@stdlib/stats/strided/dnanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmeanpn
+
+[@stdlib/stats/strided/dnanmeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmeanpw
+
+[@stdlib/stats/strided/dnanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmeanwd
+
+[@stdlib/stats/strided/dnanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmin
+
+[@stdlib/stats/strided/dnanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanminabs
+
+[@stdlib/stats/strided/dnanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanrange
+
+[@stdlib/stats/strided/dnanstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevch
+
+[@stdlib/stats/strided/dnanstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevpn
+
+[@stdlib/stats/strided/dnanstdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevtk
+
+[@stdlib/stats/strided/dnanstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevwd
+
+[@stdlib/stats/strided/dnanstdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevyc
+
+[@stdlib/stats/strided/dnanvariance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariance
+
+[@stdlib/stats/strided/dnanvariancech]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariancech
+
+[@stdlib/stats/strided/dnanvariancepn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariancepn
+
+[@stdlib/stats/strided/dnanvariancetk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariancetk
+
+[@stdlib/stats/strided/dnanvariancewd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvariancewd
+
+[@stdlib/stats/strided/dnanvarianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanvarianceyc
+
+[@stdlib/stats/strided/drange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/drange
+
+[@stdlib/stats/strided/dsemch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemch
+
+[@stdlib/stats/strided/dsemtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemtk
+
+[@stdlib/stats/strided/dsemwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemwd
+
+[@stdlib/stats/strided/dsemyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemyc
+
+[@stdlib/stats/strided/dsmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsmean
+
+[@stdlib/stats/strided/dsmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsmeanors
+
+[@stdlib/stats/strided/dsmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsmeanpn
+
+[@stdlib/stats/strided/dsmeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsmeanpw
+
+[@stdlib/stats/strided/dsmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsmeanwd
+
+[@stdlib/stats/strided/dsnanmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsnanmean
+
+[@stdlib/stats/strided/dsnanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsnanmeanors
+
+[@stdlib/stats/strided/dsnanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsnanmeanpn
+
+[@stdlib/stats/strided/dsnanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsnanmeanwd
+
+[@stdlib/stats/strided/dstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevch
+
+[@stdlib/stats/strided/dstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevpn
+
+[@stdlib/stats/strided/dstdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevtk
+
+[@stdlib/stats/strided/dstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevwd
+
+[@stdlib/stats/strided/dstdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevyc
+
+[@stdlib/stats/strided/dsvariance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsvariance
+
+[@stdlib/stats/strided/dsvariancepn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsvariancepn
+
+[@stdlib/stats/strided/dvariance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvariance
+
+[@stdlib/stats/strided/dvariancech]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvariancech
+
+[@stdlib/stats/strided/dvariancepn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvariancepn
+
+[@stdlib/stats/strided/dvariancetk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvariancetk
+
+[@stdlib/stats/strided/dvariancewd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvariancewd
+
+[@stdlib/stats/strided/dvarianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvarianceyc
+
+[@stdlib/stats/strided/dvarmtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvarmtk
+
+[@stdlib/stats/strided/scumax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scumax
+
+[@stdlib/stats/strided/scumaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scumaxabs
+
+[@stdlib/stats/strided/scumin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scumin
+
+[@stdlib/stats/strided/scuminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scuminabs
+
+[@stdlib/stats/strided/sdsmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sdsmean
+
+[@stdlib/stats/strided/sdsmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sdsmeanors
+
+[@stdlib/stats/strided/smax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smax
+
+[@stdlib/stats/strided/smaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smaxabs
+
+[@stdlib/stats/strided/smaxabssorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smaxabssorted
+
+[@stdlib/stats/strided/smaxsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smaxsorted
+
+[@stdlib/stats/strided/smeanli]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smeanli
+
+[@stdlib/stats/strided/smeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smeanpw
+
+[@stdlib/stats/strided/smeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smeanwd
+
+[@stdlib/stats/strided/smediansorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smediansorted
+
+[@stdlib/stats/strided/smidrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smidrange
+
+[@stdlib/stats/strided/smin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smin
+
+[@stdlib/stats/strided/sminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sminabs
+
+[@stdlib/stats/strided/sminsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sminsorted
+
+[@stdlib/stats/strided/smskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smskmax
+
+[@stdlib/stats/strided/smskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smskmin
+
+[@stdlib/stats/strided/smskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smskrange
+
+[@stdlib/stats/strided/snanmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmax
+
+[@stdlib/stats/strided/snanmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmaxabs
+
+[@stdlib/stats/strided/snanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmeanors
+
+[@stdlib/stats/strided/snanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmeanpn
+
+[@stdlib/stats/strided/snanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmeanwd
+
+[@stdlib/stats/strided/snanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmin
+
+[@stdlib/stats/strided/snanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanminabs
+
+[@stdlib/stats/strided/snanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanrange
+
+[@stdlib/stats/strided/srange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/srange
+
+[@stdlib/stats/strided/sstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdevch
+
+[@stdlib/stats/strided/sstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdevpn
+
+[@stdlib/stats/strided/sstdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdevtk
+
+[@stdlib/stats/strided/sstdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdevyc
+
+[@stdlib/stats/strided/svariancech]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/svariancech
+
+[@stdlib/stats/strided/svariancepn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/svariancepn
+
+[@stdlib/stats/strided/svariancetk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/svariancetk
+
+[@stdlib/stats/strided/svarianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/svarianceyc
+
+
+