From e821269b78eafe3bbcdfb2107c5f3e0bd5e77871 Mon Sep 17 00:00:00 2001
From: Planeshifter <1913638+Planeshifter@users.noreply.github.com>
Date: Sun, 8 Jun 2025 02:52:25 +0000
Subject: [PATCH] docs: update namespace table of contents
Signed-off-by: stdlib-bot <82920195+stdlib-bot@users.noreply.github.com>
---
lib/node_modules/@stdlib/blas/base/README.md | 4 +--
.../@stdlib/number/uint16/base/README.md | 9 +++++
.../@stdlib/number/uint8/base/README.md | 9 +++++
.../@stdlib/stats/array/README.md | 9 +++++
lib/node_modules/@stdlib/stats/base/README.md | 22 ++----------
.../@stdlib/stats/strided/README.md | 36 +++++++++++++++++++
6 files changed, 67 insertions(+), 22 deletions(-)
diff --git a/lib/node_modules/@stdlib/blas/base/README.md b/lib/node_modules/@stdlib/blas/base/README.md
index 4276b8027ceb..9cdbd9445f4f 100644
--- a/lib/node_modules/@stdlib/blas/base/README.md
+++ b/lib/node_modules/@stdlib/blas/base/README.md
@@ -74,8 +74,8 @@ var o = blas;
- [`isamax( N, x, strideX )`][@stdlib/blas/base/isamax]: find the index of the first element having the maximum absolute value.
- [`sasum( N, x, stride )`][@stdlib/blas/base/sasum]: compute the sum of absolute values (_L1_ norm).
- [`saxpy( N, alpha, x, strideX, y, strideY )`][@stdlib/blas/base/saxpy]: multiply a vector `x` by a constant `alpha` and add the result to `y`.
-- [`scasum( N, cx, strideX )`][@stdlib/blas/base/scasum]: compute the sum of the absolute values of the real and imaginary components of a single-precision complex floating-point vector.
-- [`scnrm2( N, cx, strideX )`][@stdlib/blas/base/scnrm2]: compute the L2-norm of a complex single-precision floating-point vector.
+- [`scasum( N, x, strideX )`][@stdlib/blas/base/scasum]: compute the sum of the absolute values of the real and imaginary components of a single-precision complex floating-point vector.
+- [`scnrm2( N, x, strideX )`][@stdlib/blas/base/scnrm2]: compute the L2-norm of a complex single-precision floating-point vector.
- [`scopy( N, x, strideX, y, strideY )`][@stdlib/blas/base/scopy]: copy values from `x` into `y`.
- [`sdot( N, x, strideX, y, strideY )`][@stdlib/blas/base/sdot]: calculate the dot product of two single-precision floating-point vectors.
- [`sdsdot( N, scalar, x, strideX, y, strideY )`][@stdlib/blas/base/sdsdot]: calculate the dot product of two single-precision floating-point vectors with extended accumulation.
diff --git a/lib/node_modules/@stdlib/number/uint16/base/README.md b/lib/node_modules/@stdlib/number/uint16/base/README.md
index ce71efce4be3..1fbd1feb0718 100644
--- a/lib/node_modules/@stdlib/number/uint16/base/README.md
+++ b/lib/node_modules/@stdlib/number/uint16/base/README.md
@@ -43,7 +43,10 @@ var o = ns;
+- [`add( x, y )`][@stdlib/number/uint16/base/add]: compute the sum of two unsigned 16-bit integers.
- [`fromBinaryStringUint16( bstr )`][@stdlib/number/uint16/base/from-binary-string]: create an unsigned 16-bit integer from a literal bit representation.
+- [`mul( x, y )`][@stdlib/number/uint16/base/mul]: multiply two unsigned 16-bit integers.
+- [`sub( x, y )`][@stdlib/number/uint16/base/sub]: subtract two unsigned 16-bit integers.
- [`toBinaryStringUint16( x )`][@stdlib/number/uint16/base/to-binary-string]: return a string giving the literal bit representation of an unsigned 16-bit integer.
@@ -87,8 +90,14 @@ console.log( objectKeys( ns ) );
+[@stdlib/number/uint16/base/add]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/number/uint16/base/add
+
[@stdlib/number/uint16/base/from-binary-string]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/number/uint16/base/from-binary-string
+[@stdlib/number/uint16/base/mul]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/number/uint16/base/mul
+
+[@stdlib/number/uint16/base/sub]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/number/uint16/base/sub
+
[@stdlib/number/uint16/base/to-binary-string]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/number/uint16/base/to-binary-string
diff --git a/lib/node_modules/@stdlib/number/uint8/base/README.md b/lib/node_modules/@stdlib/number/uint8/base/README.md
index e2aa2952e4f1..c22d5d4e9493 100644
--- a/lib/node_modules/@stdlib/number/uint8/base/README.md
+++ b/lib/node_modules/@stdlib/number/uint8/base/README.md
@@ -43,7 +43,10 @@ var o = ns;
+- [`add( x, y )`][@stdlib/number/uint8/base/add]: compute the sum of two unsigned 8-bit integers.
- [`fromBinaryStringUint8( bstr )`][@stdlib/number/uint8/base/from-binary-string]: create an unsigned 8-bit integer from a literal bit representation.
+- [`mul( x, y )`][@stdlib/number/uint8/base/mul]: multiply two unsigned 8-bit integers.
+- [`sub( x, y )`][@stdlib/number/uint8/base/sub]: subtract two unsigned 8-bit integers.
- [`toBinaryStringUint8( x )`][@stdlib/number/uint8/base/to-binary-string]: return a string giving the literal bit representation of an unsigned 8-bit integer.
@@ -87,8 +90,14 @@ console.log( objectKeys( ns ) );
+[@stdlib/number/uint8/base/add]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/number/uint8/base/add
+
[@stdlib/number/uint8/base/from-binary-string]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/number/uint8/base/from-binary-string
+[@stdlib/number/uint8/base/mul]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/number/uint8/base/mul
+
+[@stdlib/number/uint8/base/sub]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/number/uint8/base/sub
+
[@stdlib/number/uint8/base/to-binary-string]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/number/uint8/base/to-binary-string
diff --git a/lib/node_modules/@stdlib/stats/array/README.md b/lib/node_modules/@stdlib/stats/array/README.md
index 6b13d45a0254..b69867155f12 100644
--- a/lib/node_modules/@stdlib/stats/array/README.md
+++ b/lib/node_modules/@stdlib/stats/array/README.md
@@ -71,8 +71,11 @@ The namespace exports the following:
- [`nanmaxBy( x, clbk[, thisArg] )`][@stdlib/stats/array/nanmax-by]: calculate the maximum value of an array via a callback function, ignoring `NaN` values.
- [`nanmax( x )`][@stdlib/stats/array/nanmax]: calculate the maximum value of an array, ignoring `NaN` values.
- [`nanmaxabs( x )`][@stdlib/stats/array/nanmaxabs]: calculate the maximum absolute value of an array, ignoring `NaN` values.
+- [`nanminBy( x, clbk[, thisArg] )`][@stdlib/stats/array/nanmin-by]: calculate the minimum value of an array via a callback function, ignoring `NaN` values.
- [`nanmin( x )`][@stdlib/stats/array/nanmin]: calculate the minimum value of an array, ignoring `NaN` values.
+- [`nanminabs( x )`][@stdlib/stats/array/nanminabs]: calculate the minimum absolute value of an array, ignoring `NaN` values.
- [`nanrange( x )`][@stdlib/stats/array/nanrange]: calculate the range of an array, ignoring `NaN` values.
+- [`range( x )`][@stdlib/stats/array/range]: calculate the range of an array.
- [`varianceyc( x[, correction] )`][@stdlib/stats/array/varianceyc]: calculate the variance of an array using a one-pass algorithm proposed by Youngs and Cramer.
@@ -158,10 +161,16 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/array/nanmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/nanmaxabs
+[@stdlib/stats/array/nanmin-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/nanmin-by
+
[@stdlib/stats/array/nanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/nanmin
+[@stdlib/stats/array/nanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/nanminabs
+
[@stdlib/stats/array/nanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/nanrange
+[@stdlib/stats/array/range]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/range
+
[@stdlib/stats/array/varianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/array/varianceyc
diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index 6e291cd85970..4faeac56e312 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -65,16 +65,13 @@ The namespace contains the following statistical functions:
- [`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]: calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.
- [`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]: calculate the mean and variance of a double-precision floating-point strided array.
- [`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]: calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.
-- [`dsem( N, correction, x, strideX )`][@stdlib/stats/strided/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array.
-- [`dsempn( N, correction, x, strideX )`][@stdlib/stats/strided/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.
-- [`dstdev( N, correction, x, strideX )`][@stdlib/stats/strided/dstdev]: calculate the standard deviation of a double-precision floating-point strided array.
- [`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]: calculate the variance of a double-precision floating-point strided array provided a known mean.
- [`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.
- [`maxBy( N, x, strideX, clbk[, thisArg] )`][@stdlib/stats/base/max-by]: calculate the maximum value of a strided array via a callback function.
- [`max( N, x, strideX )`][@stdlib/stats/base/max]: calculate the maximum value of a strided array.
- [`maxabs( N, x, strideX )`][@stdlib/stats/base/maxabs]: calculate the maximum absolute value of a strided array.
- [`maxsorted( N, x, strideX )`][@stdlib/stats/base/maxsorted]: calculate the maximum value of a sorted strided array.
-- [`mean( N, x, stride )`][@stdlib/stats/base/mean]: calculate the arithmetic mean of a strided array.
+- [`mean( N, x, strideX )`][@stdlib/stats/base/mean]: calculate the arithmetic mean of a strided array.
- [`meankbn( N, x, stride )`][@stdlib/stats/base/meankbn]: calculate the arithmetic mean of a strided array using an improved Kahan–Babuška algorithm.
- [`meankbn2( N, x, stride )`][@stdlib/stats/base/meankbn2]: calculate the arithmetic mean of a strided array using a second-order iterative Kahan–Babuška algorithm.
- [`meanors( N, x, stride )`][@stdlib/stats/base/meanors]: calculate the arithmetic mean of a strided array using ordinary recursive summation.
@@ -96,7 +93,7 @@ The namespace contains the following statistical functions:
- [`nanmeanors( N, x, stride )`][@stdlib/stats/base/nanmeanors]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.
- [`nanmeanpn( N, x, strideX )`][@stdlib/stats/base/nanmeanpn]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
- [`nanmeanwd( N, x, stride )`][@stdlib/stats/base/nanmeanwd]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using Welford's algorithm.
-- [`nanminBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanmin-by]: calculate the minimum value of a strided array via a callback function, ignoring `NaN` values.
+- [`nanminBy( N, x, strideX, clbk[, thisArg] )`][@stdlib/stats/base/nanmin-by]: calculate the minimum value of a strided array via a callback function, ignoring `NaN` values.
- [`nanmin( N, x, strideX )`][@stdlib/stats/base/nanmin]: calculate the minimum value of a strided array, ignoring `NaN` values.
- [`nanminabs( N, x, strideX )`][@stdlib/stats/base/nanminabs]: calculate the minimum absolute value of a strided array, ignoring `NaN` values.
- [`nanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmax]: calculate the maximum value of a strided array according to a mask, ignoring `NaN` values.
@@ -128,9 +125,6 @@ The namespace contains the following statistical functions:
- [`smeanors( N, x, stride )`][@stdlib/stats/base/smeanors]: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.
- [`smeanpn( N, x, strideX )`][@stdlib/stats/base/smeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.
- [`snanmean( N, x, stride )`][@stdlib/stats/base/snanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values.
-- [`snanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/snanmskmax]: calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.
-- [`snanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/snanmskmin]: calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.
-- [`snanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/snanmskrange]: calculate the range of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`snanstdev( N, correction, x, stride )`][@stdlib/stats/base/snanstdev]: calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values.
- [`snanstdevch( N, correction, x, stride )`][@stdlib/stats/base/snanstdevch]: calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
- [`snanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/snanstdevpn]: calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
@@ -225,12 +219,6 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/dmeanvarpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dmeanvarpn
-[@stdlib/stats/strided/dsem]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsem
-
-[@stdlib/stats/strided/dsempn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsempn
-
-[@stdlib/stats/strided/dstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdev
-
[@stdlib/stats/base/dvarm]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dvarm
[@stdlib/stats/base/dvarmpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/dvarmpn
@@ -351,12 +339,6 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/snanmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanmean
-[@stdlib/stats/strided/snanmskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmskmax
-
-[@stdlib/stats/strided/snanmskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmskmin
-
-[@stdlib/stats/strided/snanmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmskrange
-
[@stdlib/stats/base/snanstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanstdev
[@stdlib/stats/base/snanstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/snanstdevch
diff --git a/lib/node_modules/@stdlib/stats/strided/README.md b/lib/node_modules/@stdlib/stats/strided/README.md
index abcbb9da8e8b..8008935991eb 100644
--- a/lib/node_modules/@stdlib/stats/strided/README.md
+++ b/lib/node_modules/@stdlib/stats/strided/README.md
@@ -63,11 +63,13 @@ The namespace exports the following:
- [`dmaxabs( N, x, strideX )`][@stdlib/stats/strided/dmaxabs]: calculate the maximum absolute value of a double-precision floating-point strided array.
- [`dmaxabssorted( N, x, strideX )`][@stdlib/stats/strided/dmaxabssorted]: calculate the maximum absolute value of a sorted double-precision floating-point strided array.
- [`dmaxsorted( N, x, strideX )`][@stdlib/stats/strided/dmaxsorted]: calculate the maximum value of a sorted double-precision floating-point strided array.
+- [`dmean( N, x, strideX )`][@stdlib/stats/strided/dmean]: calculate the arithmetic mean of a double-precision floating-point strided array.
- [`dmeankbn( N, x, strideX )`][@stdlib/stats/strided/dmeankbn]: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.
- [`dmeankbn2( N, x, strideX )`][@stdlib/stats/strided/dmeankbn2]: calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.
- [`dmeanli( N, x, strideX )`][@stdlib/stats/strided/dmeanli]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
- [`dmeanlipw( N, x, strideX )`][@stdlib/stats/strided/dmeanlipw]: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.
- [`dmeanors( N, x, strideX )`][@stdlib/stats/strided/dmeanors]: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.
+- [`dmeanpn( N, x, strideX )`][@stdlib/stats/strided/dmeanpn]: calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.
- [`dmeanpw( N, x, strideX )`][@stdlib/stats/strided/dmeanpw]: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.
- [`dmeanwd( N, x, strideX )`][@stdlib/stats/strided/dmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.
- [`dmediansorted( N, x, strideX )`][@stdlib/stats/strided/dmediansorted]: calculate the median value of a sorted double-precision floating-point strided array.
@@ -87,7 +89,11 @@ The namespace exports the following:
- [`dnanmeanwd( N, x, strideX )`][@stdlib/stats/strided/dnanmeanwd]: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values.
- [`dnanmin( N, x, strideX )`][@stdlib/stats/strided/dnanmin]: calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values.
- [`dnanminabs( N, x, strideX )`][@stdlib/stats/strided/dnanminabs]: calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.
+- [`dnanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/dnanmskmax]: calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
+- [`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/dnanmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
+- [`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/dnanmskrange]: calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`dnanrange( N, x, strideX )`][@stdlib/stats/strided/dnanrange]: calculate the range of a double-precision floating-point strided array, ignoring `NaN` values.
+- [`dnanstdev( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdev]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.
- [`dnanstdevch( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevch]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
- [`dnanstdevpn( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevpn]: calculate the standard deviation of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass algorithm.
- [`dnanstdevtk( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdevtk]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
@@ -100,7 +106,9 @@ The namespace exports the following:
- [`dnanvariancewd( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvariancewd]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
- [`dnanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/strided/dnanvarianceyc]: calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
- [`drange( N, x, strideX )`][@stdlib/stats/strided/drange]: calculate the range of a double-precision floating-point strided array.
+- [`dsem( N, correction, x, strideX )`][@stdlib/stats/strided/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array.
- [`dsemch( N, correction, x, strideX )`][@stdlib/stats/strided/dsemch]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`dsempn( N, correction, x, strideX )`][@stdlib/stats/strided/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.
- [`dsemtk( N, correction, x, strideX )`][@stdlib/stats/strided/dsemtk]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.
- [`dsemwd( N, correction, x, strideX )`][@stdlib/stats/strided/dsemwd]: calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.
- [`dsemyc( N, correction, x, strideX )`][@stdlib/stats/strided/dsemyc]: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
@@ -113,6 +121,7 @@ The namespace exports the following:
- [`dsnanmeanors( N, x, strideX )`][@stdlib/stats/strided/dsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
- [`dsnanmeanpn( N, x, strideX )`][@stdlib/stats/strided/dsnanmeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.
- [`dsnanmeanwd( N, x, strideX )`][@stdlib/stats/strided/dsnanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.
+- [`dstdev( N, correction, x, strideX )`][@stdlib/stats/strided/dstdev]: calculate the standard deviation of a double-precision floating-point strided array.
- [`dstdevch( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevch]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.
- [`dstdevpn( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevpn]: calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.
- [`dstdevtk( N, correction, x, strideX )`][@stdlib/stats/strided/dstdevtk]: calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.
@@ -155,6 +164,9 @@ The namespace exports the following:
- [`snanmeanwd( N, x, strideX )`][@stdlib/stats/strided/snanmeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.
- [`snanmin( N, x, strideX )`][@stdlib/stats/strided/snanmin]: calculate the minimum value of a single-precision floating-point strided array, ignoring `NaN` values.
- [`snanminabs( N, x, strideX )`][@stdlib/stats/strided/snanminabs]: calculate the minimum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.
+- [`snanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/snanmskmax]: calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.
+- [`snanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/snanmskmin]: calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.
+- [`snanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/snanmskrange]: calculate the range of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`snanrange( N, x, strideX )`][@stdlib/stats/strided/snanrange]: calculate the range of a single-precision floating-point strided array, ignoring `NaN` values.
- [`srange( N, x, strideX )`][@stdlib/stats/strided/srange]: calculate the range of a single-precision floating-point strided array.
- [`sstdevch( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevch]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.
@@ -233,6 +245,8 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/strided/dmaxsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmaxsorted
+[@stdlib/stats/strided/dmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmean
+
[@stdlib/stats/strided/dmeankbn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeankbn
[@stdlib/stats/strided/dmeankbn2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeankbn2
@@ -243,6 +257,8 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/strided/dmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeanors
+[@stdlib/stats/strided/dmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeanpn
+
[@stdlib/stats/strided/dmeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeanpw
[@stdlib/stats/strided/dmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dmeanwd
@@ -281,8 +297,16 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/strided/dnanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanminabs
+[@stdlib/stats/strided/dnanmskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmskmax
+
+[@stdlib/stats/strided/dnanmskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmskmin
+
+[@stdlib/stats/strided/dnanmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanmskrange
+
[@stdlib/stats/strided/dnanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanrange
+[@stdlib/stats/strided/dnanstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdev
+
[@stdlib/stats/strided/dnanstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevch
[@stdlib/stats/strided/dnanstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dnanstdevpn
@@ -307,8 +331,12 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/strided/drange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/drange
+[@stdlib/stats/strided/dsem]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsem
+
[@stdlib/stats/strided/dsemch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemch
+[@stdlib/stats/strided/dsempn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsempn
+
[@stdlib/stats/strided/dsemtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemtk
[@stdlib/stats/strided/dsemwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsemwd
@@ -333,6 +361,8 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/strided/dsnanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dsnanmeanwd
+[@stdlib/stats/strided/dstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdev
+
[@stdlib/stats/strided/dstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevch
[@stdlib/stats/strided/dstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dstdevpn
@@ -417,6 +447,12 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/strided/snanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanminabs
+[@stdlib/stats/strided/snanmskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmskmax
+
+[@stdlib/stats/strided/snanmskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmskmin
+
+[@stdlib/stats/strided/snanmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmskrange
+
[@stdlib/stats/strided/snanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanrange
[@stdlib/stats/strided/srange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/srange