diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index 3ba4221733f6..878fbc2ea45a 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -65,8 +65,8 @@ The namespace contains the following statistical functions:
- [`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]: calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.
- [`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]: calculate the mean and variance of a double-precision floating-point strided array.
- [`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]: calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.
-- [`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]: calculate the variance of a double-precision floating-point strided array provided a known mean.
-- [`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.
+- [`dvarm( N, mean, correction, x, strideX )`][@stdlib/stats/base/dvarm]: calculate the variance of a double-precision floating-point strided array provided a known mean.
+- [`dvarmpn( N, mean, correction, x, strideX )`][@stdlib/stats/base/dvarmpn]: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.
- [`nanmean( N, x, strideX )`][@stdlib/stats/base/nanmean]: calculate the arithmetic mean of a strided array, ignoring `NaN` values.
- [`nanmeanors( N, x, stride )`][@stdlib/stats/base/nanmeanors]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.
- [`nanmeanpn( N, x, strideX )`][@stdlib/stats/base/nanmeanpn]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
@@ -83,7 +83,7 @@ The namespace contains the following statistical functions:
- [`nanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/nanstdevwd]: calculate the standard deviation of a strided array ignoring `NaN` values and using Welford's algorithm.
- [`nanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/nanstdevyc]: calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
- [`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]: calculate the variance of a strided array ignoring `NaN` values.
-- [`nanvariancech( N, correction, x, stride )`][@stdlib/stats/base/nanvariancech]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
+- [`nanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancech]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
- [`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]: calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.
- [`nanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancetk]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.
- [`nanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancewd]: calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm.
@@ -111,17 +111,17 @@ The namespace contains the following statistical functions:
- [`snanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/snanvariancewd]: calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
- [`snanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/snanvarianceyc]: calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
- [`sstdevwd( N, correction, x, stride )`][@stdlib/stats/base/sstdevwd]: calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm.
-- [`stdev( N, correction, x, stride )`][@stdlib/stats/base/stdev]: calculate the standard deviation of a strided array.
-- [`stdevch( N, correction, x, stride )`][@stdlib/stats/base/stdevch]: calculate the standard deviation of a strided array using a one-pass trial mean algorithm.
-- [`stdevpn( N, correction, x, stride )`][@stdlib/stats/base/stdevpn]: calculate the standard deviation of a strided array using a two-pass algorithm.
+- [`stdev( N, correction, x, strideX )`][@stdlib/stats/base/stdev]: calculate the standard deviation of a strided array.
+- [`stdevch( N, correction, x, strideX )`][@stdlib/stats/base/stdevch]: calculate the standard deviation of a strided array using a one-pass trial mean algorithm.
+- [`stdevpn( N, correction, x, strideX )`][@stdlib/stats/base/stdevpn]: calculate the standard deviation of a strided array using a two-pass algorithm.
- [`stdevtk( N, correction, x, stride )`][@stdlib/stats/base/stdevtk]: calculate the standard deviation of a strided array using a one-pass textbook algorithm.
- [`stdevwd( N, correction, x, stride )`][@stdlib/stats/base/stdevwd]: calculate the standard deviation of a strided array using Welford's algorithm.
- [`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]: calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.
- [`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]: calculate the variance of a single-precision floating-point strided array.
- [`svariancewd( N, correction, x, strideX )`][@stdlib/stats/base/svariancewd]: calculate the variance of a single-precision floating-point strided array using Welford's algorithm.
- [`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]: calculate the variance of a strided array.
-- [`variancech( N, correction, x, stride )`][@stdlib/stats/base/variancech]: calculate the variance of a strided array using a one-pass trial mean algorithm.
-- [`variancepn( N, correction, x, stride )`][@stdlib/stats/base/variancepn]: calculate the variance of a strided array using a two-pass algorithm.
+- [`variancech( N, correction, x, strideX )`][@stdlib/stats/base/variancech]: calculate the variance of a strided array using a one-pass trial mean algorithm.
+- [`variancepn( N, correction, x, strideX )`][@stdlib/stats/base/variancepn]: calculate the variance of a strided array using a two-pass algorithm.
- [`variancetk( N, correction, x, stride )`][@stdlib/stats/base/variancetk]: calculate the variance of a strided array using a one-pass textbook algorithm.
- [`variancewd( N, correction, x, stride )`][@stdlib/stats/base/variancewd]: calculate the variance of a strided array using Welford's algorithm.
- [`varianceyc( N, correction, x, strideX )`][@stdlib/stats/base/varianceyc]: calculate the variance of a strided array using a one-pass algorithm proposed by Youngs and Cramer.