diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md index 3ba4221733f6..878fbc2ea45a 100644 --- a/lib/node_modules/@stdlib/stats/base/README.md +++ b/lib/node_modules/@stdlib/stats/base/README.md @@ -65,8 +65,8 @@ The namespace contains the following statistical functions: - [`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]: calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm. - [`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]: calculate the mean and variance of a double-precision floating-point strided array. - [`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]: calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm. -- [`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]: calculate the variance of a double-precision floating-point strided array provided a known mean. -- [`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm. +- [`dvarm( N, mean, correction, x, strideX )`][@stdlib/stats/base/dvarm]: calculate the variance of a double-precision floating-point strided array provided a known mean. +- [`dvarmpn( N, mean, correction, x, strideX )`][@stdlib/stats/base/dvarmpn]: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm. - [`nanmean( N, x, strideX )`][@stdlib/stats/base/nanmean]: calculate the arithmetic mean of a strided array, ignoring `NaN` values. - [`nanmeanors( N, x, stride )`][@stdlib/stats/base/nanmeanors]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation. - [`nanmeanpn( N, x, strideX )`][@stdlib/stats/base/nanmeanpn]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm. @@ -83,7 +83,7 @@ The namespace contains the following statistical functions: - [`nanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/nanstdevwd]: calculate the standard deviation of a strided array ignoring `NaN` values and using Welford's algorithm. - [`nanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/nanstdevyc]: calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. - [`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]: calculate the variance of a strided array ignoring `NaN` values. -- [`nanvariancech( N, correction, x, stride )`][@stdlib/stats/base/nanvariancech]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm. +- [`nanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancech]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm. - [`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]: calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm. - [`nanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancetk]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm. - [`nanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancewd]: calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm. @@ -111,17 +111,17 @@ The namespace contains the following statistical functions: - [`snanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/snanvariancewd]: calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm. - [`snanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/snanvarianceyc]: calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. - [`sstdevwd( N, correction, x, stride )`][@stdlib/stats/base/sstdevwd]: calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm. -- [`stdev( N, correction, x, stride )`][@stdlib/stats/base/stdev]: calculate the standard deviation of a strided array. -- [`stdevch( N, correction, x, stride )`][@stdlib/stats/base/stdevch]: calculate the standard deviation of a strided array using a one-pass trial mean algorithm. -- [`stdevpn( N, correction, x, stride )`][@stdlib/stats/base/stdevpn]: calculate the standard deviation of a strided array using a two-pass algorithm. +- [`stdev( N, correction, x, strideX )`][@stdlib/stats/base/stdev]: calculate the standard deviation of a strided array. +- [`stdevch( N, correction, x, strideX )`][@stdlib/stats/base/stdevch]: calculate the standard deviation of a strided array using a one-pass trial mean algorithm. +- [`stdevpn( N, correction, x, strideX )`][@stdlib/stats/base/stdevpn]: calculate the standard deviation of a strided array using a two-pass algorithm. - [`stdevtk( N, correction, x, stride )`][@stdlib/stats/base/stdevtk]: calculate the standard deviation of a strided array using a one-pass textbook algorithm. - [`stdevwd( N, correction, x, stride )`][@stdlib/stats/base/stdevwd]: calculate the standard deviation of a strided array using Welford's algorithm. - [`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]: calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer. - [`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]: calculate the variance of a single-precision floating-point strided array. - [`svariancewd( N, correction, x, strideX )`][@stdlib/stats/base/svariancewd]: calculate the variance of a single-precision floating-point strided array using Welford's algorithm. - [`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]: calculate the variance of a strided array. -- [`variancech( N, correction, x, stride )`][@stdlib/stats/base/variancech]: calculate the variance of a strided array using a one-pass trial mean algorithm. -- [`variancepn( N, correction, x, stride )`][@stdlib/stats/base/variancepn]: calculate the variance of a strided array using a two-pass algorithm. +- [`variancech( N, correction, x, strideX )`][@stdlib/stats/base/variancech]: calculate the variance of a strided array using a one-pass trial mean algorithm. +- [`variancepn( N, correction, x, strideX )`][@stdlib/stats/base/variancepn]: calculate the variance of a strided array using a two-pass algorithm. - [`variancetk( N, correction, x, stride )`][@stdlib/stats/base/variancetk]: calculate the variance of a strided array using a one-pass textbook algorithm. - [`variancewd( N, correction, x, stride )`][@stdlib/stats/base/variancewd]: calculate the variance of a strided array using Welford's algorithm. - [`varianceyc( N, correction, x, strideX )`][@stdlib/stats/base/varianceyc]: calculate the variance of a strided array using a one-pass algorithm proposed by Youngs and Cramer.