diff --git a/lib/node_modules/@stdlib/blas/base/README.md b/lib/node_modules/@stdlib/blas/base/README.md
index 9cdbd9445f4f..f7dc7f2fb1ad 100644
--- a/lib/node_modules/@stdlib/blas/base/README.md
+++ b/lib/node_modules/@stdlib/blas/base/README.md
@@ -88,7 +88,7 @@ var o = blas;
- [`zaxpy( N, alpha, x, strideX, y, strideY )`][@stdlib/blas/base/zaxpy]: scale a double-precision complex floating-point vector by a double-precision complex floating-point constant and add the result to a double-precision complex floating-point vector.
- [`zcopy( N, x, strideX, y, strideY )`][@stdlib/blas/base/zcopy]: copy values from one complex double-precision floating-point vector to another complex double-precision floating-point vector.
- [`zdrot( N, x, strideX, y, strideY, c, s )`][@stdlib/blas/base/zdrot]: apply a plane rotation.
-- [`zdscal( N, da, zx, strideZX )`][@stdlib/blas/base/zdscal]: scale a double-precision complex floating-point vector by a double-precision floating-point constant.
+- [`zdscal( N, alpha, x, strideX )`][@stdlib/blas/base/zdscal]: scale a double-precision complex floating-point vector by a double-precision floating-point constant.
- [`zscal( N, alpha, x, strideX )`][@stdlib/blas/base/zscal]: scales a double-precision complex floating-point vector by a double-precision complex floating-point constant.
- [`zswap( N, x, strideX, y, strideY )`][@stdlib/blas/base/zswap]: interchange two complex double-precision floating-point vectors.
diff --git a/lib/node_modules/@stdlib/ndarray/base/assert/README.md b/lib/node_modules/@stdlib/ndarray/base/assert/README.md
index 97d217ad2608..cf0c54543266 100644
--- a/lib/node_modules/@stdlib/ndarray/base/assert/README.md
+++ b/lib/node_modules/@stdlib/ndarray/base/assert/README.md
@@ -78,6 +78,7 @@ var o = ns;
- [`isScalarMostlySafeCompatible( value, dtype )`][@stdlib/ndarray/base/assert/is-scalar-mostly-safe-compatible]: determine whether a scalar value can be safely cast or, for floating-point data types, downcast to specified ndarray data type.
- [`isSignedIntegerDataType( value )`][@stdlib/ndarray/base/assert/is-signed-integer-data-type]: test if an input value is a supported ndarray signed integer data type.
- [`isSingleSegmentCompatible( shape, strides, offset )`][@stdlib/ndarray/base/assert/is-single-segment-compatible]: determine if an array is compatible with a single memory segment.
+- [`isStructDataType( value )`][@stdlib/ndarray/base/assert/is-struct-data-type]: test if an input value is a supported ndarray struct data type.
- [`isUnsignedIntegerDataType( value )`][@stdlib/ndarray/base/assert/is-unsigned-integer-data-type]: test if an input value is a supported ndarray unsigned integer data type.
@@ -191,6 +192,8 @@ console.log( objectKeys( ns ) );
[@stdlib/ndarray/base/assert/is-single-segment-compatible]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/assert/is-single-segment-compatible
+[@stdlib/ndarray/base/assert/is-struct-data-type]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/assert/is-struct-data-type
+
[@stdlib/ndarray/base/assert/is-unsigned-integer-data-type]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/assert/is-unsigned-integer-data-type
diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index bab914afffb8..02760a63de17 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -115,7 +115,7 @@ The namespace contains the following statistical functions:
- [`stdevtk( N, correction, x, stride )`][@stdlib/stats/base/stdevtk]: calculate the standard deviation of a strided array using a one-pass textbook algorithm.
- [`stdevwd( N, correction, x, stride )`][@stdlib/stats/base/stdevwd]: calculate the standard deviation of a strided array using Welford's algorithm.
- [`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]: calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.
-- [`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]: calculate the variance of a single-precision floating-point strided array.
+- [`svariance( N, correction, x, strideX )`][@stdlib/stats/base/svariance]: calculate the variance of a single-precision floating-point strided array.
- [`svariancewd( N, correction, x, strideX )`][@stdlib/stats/base/svariancewd]: calculate the variance of a single-precision floating-point strided array using Welford's algorithm.
- [`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]: calculate the variance of a strided array.
- [`variancech( N, correction, x, strideX )`][@stdlib/stats/base/variancech]: calculate the variance of a strided array using a one-pass trial mean algorithm.
diff --git a/lib/node_modules/@stdlib/stats/strided/README.md b/lib/node_modules/@stdlib/stats/strided/README.md
index 8008935991eb..cf3c79856330 100644
--- a/lib/node_modules/@stdlib/stats/strided/README.md
+++ b/lib/node_modules/@stdlib/stats/strided/README.md
@@ -135,7 +135,35 @@ The namespace exports the following:
- [`dvariancetk( N, correction, x, strideX )`][@stdlib/stats/strided/dvariancetk]: calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.
- [`dvariancewd( N, correction, x, strideX )`][@stdlib/stats/strided/dvariancewd]: calculate the variance of a double-precision floating-point strided array using Welford's algorithm.
- [`dvarianceyc( N, correction, x, strideX )`][@stdlib/stats/strided/dvarianceyc]: calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
+- [`dvarm( N, mean, correction, x, strideX )`][@stdlib/stats/strided/dvarm]: calculate the variance of a double-precision floating-point strided array provided a known mean.
+- [`dvarmpn( N, mean, correction, x, strideX )`][@stdlib/stats/strided/dvarmpn]: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.
- [`dvarmtk( N, mean, correction, x, strideX )`][@stdlib/stats/strided/dvarmtk]: calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.
+- [`dztest( N, alternative, alpha, mu, sigma, x, strideX, out )`][@stdlib/stats/strided/dztest]: compute a one-sample Z-test for a double-precision floating-point strided array.
+- [`maxBy( N, x, strideX, clbk[, thisArg] )`][@stdlib/stats/strided/max-by]: calculate the maximum value of a strided array via a callback function.
+- [`max( N, x, strideX )`][@stdlib/stats/strided/max]: calculate the maximum value of a strided array.
+- [`maxabs( N, x, strideX )`][@stdlib/stats/strided/maxabs]: calculate the maximum absolute value of a strided array.
+- [`maxsorted( N, x, strideX )`][@stdlib/stats/strided/maxsorted]: calculate the maximum value of a sorted strided array.
+- [`mean( N, x, strideX )`][@stdlib/stats/strided/mean]: calculate the arithmetic mean of a strided array.
+- [`meankbn( N, x, strideX )`][@stdlib/stats/strided/meankbn]: calculate the arithmetic mean of a strided array using an improved Kahan–Babuška algorithm.
+- [`meankbn2( N, x, strideX )`][@stdlib/stats/strided/meankbn2]: calculate the arithmetic mean of a strided array using a second-order iterative Kahan–Babuška algorithm.
+- [`meanors( N, x, strideX )`][@stdlib/stats/strided/meanors]: calculate the arithmetic mean of a strided array using ordinary recursive summation.
+- [`meanpn( N, x, strideX )`][@stdlib/stats/strided/meanpn]: calculate the arithmetic mean of a strided array using a two-pass error correction algorithm.
+- [`meanpw( N, x, strideX )`][@stdlib/stats/strided/meanpw]: calculate the arithmetic mean of a strided array using pairwise summation.
+- [`meanwd( N, x, strideX )`][@stdlib/stats/strided/meanwd]: calculate the arithmetic mean of a strided array using Welford's algorithm.
+- [`mediansorted( N, x, strideX )`][@stdlib/stats/strided/mediansorted]: calculate the median value of a sorted strided array.
+- [`minBy( N, x, strideX, clbk[, thisArg] )`][@stdlib/stats/strided/min-by]: calculate the minimum value of a strided array via a callback function.
+- [`min( N, x, strideX )`][@stdlib/stats/strided/min]: calculate the minimum value of a strided array.
+- [`minabs( N, x, strideX )`][@stdlib/stats/strided/minabs]: calculate the minimum absolute value of a strided array.
+- [`minsorted( N, x, strideX )`][@stdlib/stats/strided/minsorted]: calculate the minimum value of a sorted strided array.
+- [`mskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/mskmax]: calculate the maximum value of a strided array according to a mask.
+- [`mskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/mskmin]: calculate the minimum value of a strided array according to a mask.
+- [`mskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/mskrange]: calculate the range of a strided array according to a mask.
+- [`nanmaxBy( N, x, strideX, clbk[, thisArg] )`][@stdlib/stats/strided/nanmax-by]: calculate the maximum value of a strided array via a callback function, ignoring `NaN` values.
+- [`nanmax( N, x, strideX )`][@stdlib/stats/strided/nanmax]: calculate the maximum value of a strided array, ignoring `NaN` values.
+- [`nanmaxabs( N, x, strideX )`][@stdlib/stats/strided/nanmaxabs]: calculate the maximum absolute value of a strided array, ignoring `NaN` values.
+- [`nanminBy( N, x, strideX, clbk[, thisArg] )`][@stdlib/stats/strided/nanmin-by]: calculate the minimum value of a strided array via a callback function, ignoring `NaN` values.
+- [`nanmin( N, x, strideX )`][@stdlib/stats/strided/nanmin]: calculate the minimum value of a strided array, ignoring `NaN` values.
+- [`nanminabs( N, x, strideX )`][@stdlib/stats/strided/nanminabs]: calculate the minimum absolute value of a strided array, ignoring `NaN` values.
- [`scumax( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scumax]: calculate the cumulative maximum of single-precision floating-point strided array elements.
- [`scumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scumaxabs]: calculate the cumulative maximum absolute value of single-precision floating-point strided array elements.
- [`scumin( N, x, strideX, y, strideY )`][@stdlib/stats/strided/scumin]: calculate the cumulative minimum of single-precision floating-point strided array elements.
@@ -146,7 +174,9 @@ The namespace exports the following:
- [`smaxabs( N, x, strideX )`][@stdlib/stats/strided/smaxabs]: calculate the maximum absolute value of a single-precision floating-point strided array.
- [`smaxabssorted( N, x, strideX )`][@stdlib/stats/strided/smaxabssorted]: calculate the maximum absolute value of a sorted single-precision floating-point strided array.
- [`smaxsorted( N, x, stride )`][@stdlib/stats/strided/smaxsorted]: calculate the maximum value of a sorted single-precision floating-point strided array.
+- [`smean( N, x, strideX )`][@stdlib/stats/strided/smean]: calculate the arithmetic mean of a single-precision floating-point strided array.
- [`smeanli( N, x, strideX )`][@stdlib/stats/strided/smeanli]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.
+- [`smeanpn( N, x, strideX )`][@stdlib/stats/strided/smeanpn]: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.
- [`smeanpw( N, x, strideX )`][@stdlib/stats/strided/smeanpw]: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation.
- [`smeanwd( N, x, strideX )`][@stdlib/stats/strided/smeanwd]: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.
- [`smediansorted( N, x, strideX )`][@stdlib/stats/strided/smediansorted]: calculate the median value of a sorted single-precision floating-point strided array.
@@ -169,6 +199,7 @@ The namespace exports the following:
- [`snanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/snanmskrange]: calculate the range of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.
- [`snanrange( N, x, strideX )`][@stdlib/stats/strided/snanrange]: calculate the range of a single-precision floating-point strided array, ignoring `NaN` values.
- [`srange( N, x, strideX )`][@stdlib/stats/strided/srange]: calculate the range of a single-precision floating-point strided array.
+- [`sstdev( N, correction, x, strideX )`][@stdlib/stats/strided/sstdev]: calculate the standard deviation of a single-precision floating-point strided array.
- [`sstdevch( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevch]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.
- [`sstdevpn( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevpn]: calculate the standard deviation of a single-precision floating-point strided array using a two-pass algorithm.
- [`sstdevtk( N, correction, x, strideX )`][@stdlib/stats/strided/sstdevtk]: calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.
@@ -177,6 +208,8 @@ The namespace exports the following:
- [`svariancepn( N, correction, x, strideX )`][@stdlib/stats/strided/svariancepn]: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.
- [`svariancetk( N, correction, x, strideX )`][@stdlib/stats/strided/svariancetk]: calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.
- [`svarianceyc( N, correction, x, strideX )`][@stdlib/stats/strided/svarianceyc]: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
+- [`sztest( N, alternative, alpha, mu, sigma, x, strideX, out )`][@stdlib/stats/strided/sztest]: compute a one-sample Z-test for a single-precision floating-point strided array.
+- [`ztest( N, alternative, alpha, mu, sigma, x, strideX, out )`][@stdlib/stats/strided/ztest]: compute a one-sample Z-test for a strided array.
@@ -389,8 +422,64 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/strided/dvarianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvarianceyc
+[@stdlib/stats/strided/dvarm]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvarm
+
+[@stdlib/stats/strided/dvarmpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvarmpn
+
[@stdlib/stats/strided/dvarmtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dvarmtk
+[@stdlib/stats/strided/dztest]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dztest
+
+[@stdlib/stats/strided/max-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/max-by
+
+[@stdlib/stats/strided/max]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/max
+
+[@stdlib/stats/strided/maxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/maxabs
+
+[@stdlib/stats/strided/maxsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/maxsorted
+
+[@stdlib/stats/strided/mean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/mean
+
+[@stdlib/stats/strided/meankbn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/meankbn
+
+[@stdlib/stats/strided/meankbn2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/meankbn2
+
+[@stdlib/stats/strided/meanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/meanors
+
+[@stdlib/stats/strided/meanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/meanpn
+
+[@stdlib/stats/strided/meanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/meanpw
+
+[@stdlib/stats/strided/meanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/meanwd
+
+[@stdlib/stats/strided/mediansorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/mediansorted
+
+[@stdlib/stats/strided/min-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/min-by
+
+[@stdlib/stats/strided/min]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/min
+
+[@stdlib/stats/strided/minabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/minabs
+
+[@stdlib/stats/strided/minsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/minsorted
+
+[@stdlib/stats/strided/mskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/mskmax
+
+[@stdlib/stats/strided/mskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/mskmin
+
+[@stdlib/stats/strided/mskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/mskrange
+
+[@stdlib/stats/strided/nanmax-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/nanmax-by
+
+[@stdlib/stats/strided/nanmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/nanmax
+
+[@stdlib/stats/strided/nanmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/nanmaxabs
+
+[@stdlib/stats/strided/nanmin-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/nanmin-by
+
+[@stdlib/stats/strided/nanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/nanmin
+
+[@stdlib/stats/strided/nanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/nanminabs
+
[@stdlib/stats/strided/scumax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scumax
[@stdlib/stats/strided/scumaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scumaxabs
@@ -411,8 +500,12 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/strided/smaxsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smaxsorted
+[@stdlib/stats/strided/smean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smean
+
[@stdlib/stats/strided/smeanli]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smeanli
+[@stdlib/stats/strided/smeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smeanpn
+
[@stdlib/stats/strided/smeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smeanpw
[@stdlib/stats/strided/smeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/smeanwd
@@ -457,6 +550,8 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/strided/srange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/srange
+[@stdlib/stats/strided/sstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdev
+
[@stdlib/stats/strided/sstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdevch
[@stdlib/stats/strided/sstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sstdevpn
@@ -473,6 +568,10 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/strided/svarianceyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/svarianceyc
+[@stdlib/stats/strided/sztest]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/sztest
+
+[@stdlib/stats/strided/ztest]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/ztest
+