diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md
index 82af0eb1d162..31d6e65d23c4 100644
--- a/lib/node_modules/@stdlib/stats/base/README.md
+++ b/lib/node_modules/@stdlib/stats/base/README.md
@@ -66,23 +66,23 @@ The namespace contains the following statistical functions:
- [`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]: calculate the mean and variance of a double-precision floating-point strided array.
- [`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]: calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.
- [`nanmean( N, x, strideX )`][@stdlib/stats/base/nanmean]: calculate the arithmetic mean of a strided array, ignoring `NaN` values.
-- [`nanmeanors( N, x, stride )`][@stdlib/stats/base/nanmeanors]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.
+- [`nanmeanors( N, x, strideX )`][@stdlib/stats/base/nanmeanors]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.
- [`nanmeanpn( N, x, strideX )`][@stdlib/stats/base/nanmeanpn]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.
-- [`nanmeanwd( N, x, stride )`][@stdlib/stats/base/nanmeanwd]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using Welford's algorithm.
+- [`nanmeanwd( N, x, strideX )`][@stdlib/stats/base/nanmeanwd]: calculate the arithmetic mean of a strided array, ignoring `NaN` values and using Welford's algorithm.
- [`nanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmax]: calculate the maximum value of a strided array according to a mask, ignoring `NaN` values.
- [`nanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmin]: calculate the minimum value of a strided array according to a mask, ignoring `NaN` values.
- [`nanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskrange]: calculate the range of a strided array according to a mask, ignoring `NaN` values.
- [`nanrangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanrange-by]: calculate the range of a strided array via a callback function, ignoring `NaN` values.
- [`nanrange( N, x, strideX )`][@stdlib/stats/base/nanrange]: calculate the range of a strided array, ignoring `NaN` values.
-- [`nanstdev( N, correction, x, stride )`][@stdlib/stats/base/nanstdev]: calculate the standard deviation of a strided array ignoring `NaN` values.
+- [`nanstdev( N, correction, x, strideX )`][@stdlib/stats/base/nanstdev]: calculate the standard deviation of a strided array ignoring `NaN` values.
- [`nanstdevch( N, correction, x, stride )`][@stdlib/stats/base/nanstdevch]: calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
-- [`nanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/nanstdevpn]: calculate the standard deviation of a strided array ignoring `NaN` values and using a two-pass algorithm.
+- [`nanstdevpn( N, correction, x, strideX )`][@stdlib/stats/base/nanstdevpn]: calculate the standard deviation of a strided array ignoring `NaN` values and using a two-pass algorithm.
- [`nanstdevtk( N, correction, x, stride )`][@stdlib/stats/base/nanstdevtk]: calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.
- [`nanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/nanstdevwd]: calculate the standard deviation of a strided array ignoring `NaN` values and using Welford's algorithm.
-- [`nanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/nanstdevyc]: calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
-- [`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]: calculate the variance of a strided array ignoring `NaN` values.
+- [`nanstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/nanstdevyc]: calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
+- [`nanvariance( N, correction, x, strideX )`][@stdlib/stats/base/nanvariance]: calculate the variance of a strided array ignoring `NaN` values.
- [`nanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancech]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.
-- [`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]: calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.
+- [`nanvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancepn]: calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.
- [`nanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancetk]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.
- [`nanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancewd]: calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm.
- [`nanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/nanvarianceyc]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
diff --git a/lib/node_modules/@stdlib/stats/base/ndarray/README.md b/lib/node_modules/@stdlib/stats/base/ndarray/README.md
index e6f87e07fcd3..401461699c7d 100644
--- a/lib/node_modules/@stdlib/stats/base/ndarray/README.md
+++ b/lib/node_modules/@stdlib/stats/base/ndarray/README.md
@@ -48,10 +48,12 @@ The namespace exposes the following APIs:
- [`cumax( arrays )`][@stdlib/stats/base/ndarray/cumax]: compute the cumulative maximum value of a one-dimensional ndarray.
- [`dcumax( arrays )`][@stdlib/stats/base/ndarray/dcumax]: compute the cumulative maximum value of a one-dimensional double-precision floating-point ndarray.
- [`dmax( arrays )`][@stdlib/stats/base/ndarray/dmax]: compute the maximum value of a one-dimensional double-precision floating-point ndarray.
+- [`dztest( arrays )`][@stdlib/stats/base/ndarray/dztest]: compute a one-sample Z-test for a one-dimensional double-precision floating-point ndarray.
- [`maxBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/max-by]: compute the maximum value of a one-dimensional ndarray via a callback function.
- [`max( arrays )`][@stdlib/stats/base/ndarray/max]: compute the maximum value of a one-dimensional ndarray.
- [`scumax( arrays )`][@stdlib/stats/base/ndarray/scumax]: compute the cumulative maximum value of a one-dimensional single-precision floating-point ndarray.
- [`smax( arrays )`][@stdlib/stats/base/ndarray/smax]: compute the maximum value of a one-dimensional single-precision floating-point ndarray.
+- [`sztest( arrays )`][@stdlib/stats/base/ndarray/sztest]: compute a one-sample Z-test for a one-dimensional single-precision floating-point ndarray.
@@ -100,6 +102,8 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/dmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmax
+[@stdlib/stats/base/ndarray/dztest]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dztest
+
[@stdlib/stats/base/ndarray/max-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/max-by
[@stdlib/stats/base/ndarray/max]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/max
@@ -108,6 +112,8 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/smax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smax
+[@stdlib/stats/base/ndarray/sztest]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sztest
+