diff --git a/lib/node_modules/@stdlib/ndarray/flatten-by/README.md b/lib/node_modules/@stdlib/ndarray/flatten-by/README.md new file mode 100644 index 000000000000..f4121b083525 --- /dev/null +++ b/lib/node_modules/@stdlib/ndarray/flatten-by/README.md @@ -0,0 +1,231 @@ + + +# flattenBy + +> Flatten an [ndarray][@stdlib/ndarray/ctor] according to a callback function. + +
+ +
+ + + +
+ +## Usage + +```javascript +var flattenBy = require( '@stdlib/ndarray/flatten-by' ); +``` + +#### flattenBy( x\[, options], fcn\[, thisArg] ) + +Flattens an [ndarray][@stdlib/ndarray/ctor] according to a callback function. + +```javascript +var array = require( '@stdlib/ndarray/array' ); +var ndarray2array = require( '@stdlib/ndarray/to-array' ); + +function scale( value ) { + return value * 2.0; +} + +var x = array( [ [ [ 1.0, 2.0 ] ], [ [ 3.0, 4.0 ] ], [ [ 5.0, 6.0 ] ] ] ); +// returns + +var y = flattenBy( x, scale ); +// returns + +var arr = ndarray2array( y ); +// returns [ 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 ] +``` + +The function accepts the following arguments: + +- **x**: input [ndarray][@stdlib/ndarray/ctor]. +- **options**: function options (_optional_). +- **fcn**: callback function. +- **thisArg**: callback execution context (_optional_). + +The function accepts the following options: + +- **order**: order in which input [ndarray][@stdlib/ndarray/ctor] elements should be flattened. Must be one of the following: + + - `'row-major'`: flatten elements in lexicographic order. For example, given a two-dimensional input [ndarray][@stdlib/ndarray/ctor] (i.e., a matrix), flattening in lexicographic order means flattening the input [ndarray][@stdlib/ndarray/ctor] row-by-row. + - `'column-major'`: flatten elements in colexicographic order. For example, given a two-dimensional input [ndarray][@stdlib/ndarray/ctor] (i.e., a matrix), flattening in colexicographic order means flattening the input [ndarray][@stdlib/ndarray/ctor] column-by-column. + - `'any'`: flatten according to the physical layout of the input [ndarray][@stdlib/ndarray/ctor] data in memory, regardless of the stated [order][@stdlib/ndarray/orders] of the input [ndarray][@stdlib/ndarray/ctor]. + - `'same'`: flatten according to the stated [order][@stdlib/ndarray/orders] of the input [ndarray][@stdlib/ndarray/ctor]. + + Default: `'row-major'`. + +- **depth**: maximum number of input [ndarray][@stdlib/ndarray/ctor] dimensions to flatten. + +By default, the function flattens all dimensions of the input [ndarray][@stdlib/ndarray/ctor]. To flatten to a desired depth, specify the `depth` option. + +```javascript +var array = require( '@stdlib/ndarray/array' ); +var ndarray2array = require( '@stdlib/ndarray/to-array' ); + +function scale( value ) { + return value * 2.0; +} + +var x = array( [ [ [ 1.0, 2.0 ] ], [ [ 3.0, 4.0 ] ], [ [ 5.0, 6.0 ] ] ] ); +// returns + +var opts = { + 'depth': 1 +}; + +var y = flattenBy( x, opts, scale ); +// returns + +var arr = ndarray2array( y ); +// returns [ [ 2.0, 4.0 ], [ 6.0, 8.0 ], [ 10.0, 12.0 ] ] +``` + +By default, the input [ndarray][@stdlib/ndarray/ctor] is flattened in lexicographic order. To flatten elements in a different order, specify the `order` option. + +```javascript +var array = require( '@stdlib/ndarray/array' ); +var ndarray2array = require( '@stdlib/ndarray/to-array' ); + +function scale( value ) { + return value * 2.0; +} + +var x = array( [ [ [ 1.0, 2.0 ] ], [ [ 3.0, 4.0 ] ], [ [ 5.0, 6.0 ] ] ] ); +// returns + +var opts = { + 'order': 'column-major' +}; + +var y = flattenBy( x, opts, scale ); +// returns + +var arr = ndarray2array( y ); +// returns [ 2.0, 6.0, 10.0, 4.0, 8.0, 12.0 ] +``` + +To set the callback function execution context, provide a `thisArg`. + + + +```javascript +var array = require( '@stdlib/ndarray/array' ); +var ndarray2array = require( '@stdlib/ndarray/to-array' ); + +function scale( value ) { + this.count += 1; + return value * 2.0; +} + +var x = array( [ [ [ 1.0, 2.0 ] ], [ [ 3.0, 4.0 ] ], [ [ 5.0, 6.0 ] ] ] ); +// returns + +var ctx = { + 'count': 0 +}; + +var y = flattenBy( x, scale, ctx ); +// returns + +var arr = ndarray2array( y ); +// returns [ 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 ] + +var count = ctx.count; +// returns 6 +``` + +
+ + + +
+ +## Notes + +- The function **always** returns a copy of input [ndarray][@stdlib/ndarray/ctor] data, even when an input [ndarray][@stdlib/ndarray/ctor] already has the desired number of dimensions. + +- The callback function is provided the following arguments: + + - **value**: current array element. + - **indices**: current array element indices. + - **arr**: the input [ndarray][@stdlib/ndarray/ctor]. + +- The order in which array elements are traversed and passed to a provided callback function is **not** guaranteed to match the order of array elements in an [ndarray][@stdlib/ndarray/ctor] view. Accordingly, a provided callback should avoid making assumptions regarding the order of provided elements. + +
+ + + +
+ +## Examples + + + +```javascript +var discreteUniform = require( '@stdlib/random/array/discrete-uniform' ); +var array = require( '@stdlib/ndarray/array' ); +var ndarray2array = require( '@stdlib/ndarray/to-array' ); +var flattenBy = require( '@stdlib/ndarray/flatten-by' ); + +function scale( value ) { + return value * 2.0; +} + +var xbuf = discreteUniform( 12, -100, 100, { + 'dtype': 'generic' +}); + +var x = array( xbuf, { + 'shape': [ 2, 2, 3 ], + 'dtype': 'generic' +}); +console.log( ndarray2array( x ) ); + +var y = flattenBy( x, scale ); +console.log( ndarray2array( y ) ); +``` + +
+ + + + + + + + + + + + diff --git a/lib/node_modules/@stdlib/ndarray/flatten-by/benchmark/benchmark.js b/lib/node_modules/@stdlib/ndarray/flatten-by/benchmark/benchmark.js new file mode 100644 index 000000000000..85beef563891 --- /dev/null +++ b/lib/node_modules/@stdlib/ndarray/flatten-by/benchmark/benchmark.js @@ -0,0 +1,315 @@ +/** +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +'use strict'; + +// MODULES // + +var bench = require( '@stdlib/bench' ); +var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' ); +var zeros = require( '@stdlib/ndarray/base/zeros' ); +var pkg = require( './../package.json' ).name; +var flattenBy = require( './../lib' ); + + +// FUNCTIONS // + +/** +* Callback function. +* +* @param {number} value - current value +* @returns {number} output value +*/ +function clbk( value ) { + return value + 1; +} + + +// MAIN // + +bench( pkg+'::2d:row-major', function benchmark( b ) { + var values; + var opts; + var y; + var i; + var j; + + values = [ + zeros( 'float64', [ 10, 10 ], 'row-major' ), + zeros( 'float32', [ 10, 10 ], 'row-major' ), + zeros( 'int32', [ 10, 10 ], 'row-major' ), + zeros( 'generic', [ 10, 10 ], 'row-major' ) + ]; + opts = { + 'depth': 1, + 'order': 'row-major' + }; + + b.tic(); + for ( i = 0; i < b.iterations; i++ ) { + j = i % values.length; + y = flattenBy( values[ j ], opts, clbk ); + if ( typeof y !== 'object' ) { + b.fail( 'should return an ndarray' ); + } + } + b.toc(); + if ( !isndarrayLike( y ) ) { + b.fail( 'should return an ndarray' ); + } + b.pass( 'benchmark finished' ); + b.end(); +}); + +bench( pkg+'::2d:column-major', function benchmark( b ) { + var values; + var opts; + var y; + var i; + var j; + + values = [ + zeros( 'float64', [ 10, 10 ], 'row-major' ), + zeros( 'float32', [ 10, 10 ], 'row-major' ), + zeros( 'int32', [ 10, 10 ], 'row-major' ), + zeros( 'generic', [ 10, 10 ], 'row-major' ) + ]; + opts = { + 'depth': 1, + 'order': 'column-major' + }; + + b.tic(); + for ( i = 0; i < b.iterations; i++ ) { + j = i % values.length; + y = flattenBy( values[ j ], opts, clbk ); + if ( typeof y !== 'object' ) { + b.fail( 'should return an ndarray' ); + } + } + b.toc(); + if ( !isndarrayLike( y ) ) { + b.fail( 'should return an ndarray' ); + } + b.pass( 'benchmark finished' ); + b.end(); +}); + +bench( pkg+'::3d:row-major', function benchmark( b ) { + var values; + var opts; + var y; + var i; + var j; + + values = [ + zeros( 'float64', [ 2, 5, 10 ], 'row-major' ), + zeros( 'float32', [ 2, 5, 10 ], 'row-major' ), + zeros( 'int32', [ 2, 5, 10 ], 'row-major' ), + zeros( 'generic', [ 2, 5, 10 ], 'row-major' ) + ]; + opts = { + 'depth': 2, + 'order': 'row-major' + }; + + b.tic(); + for ( i = 0; i < b.iterations; i++ ) { + j = i % values.length; + y = flattenBy( values[ j ], opts, clbk ); + if ( typeof y !== 'object' ) { + b.fail( 'should return an ndarray' ); + } + } + b.toc(); + if ( !isndarrayLike( y ) ) { + b.fail( 'should return an ndarray' ); + } + b.pass( 'benchmark finished' ); + b.end(); +}); + +bench( pkg+'::3d:column-major', function benchmark( b ) { + var values; + var opts; + var y; + var i; + var j; + + values = [ + zeros( 'float64', [ 2, 5, 10 ], 'row-major' ), + zeros( 'float32', [ 2, 5, 10 ], 'row-major' ), + zeros( 'int32', [ 2, 5, 10 ], 'row-major' ), + zeros( 'generic', [ 2, 5, 10 ], 'row-major' ) + ]; + opts = { + 'depth': 2, + 'order': 'column-major' + }; + + b.tic(); + for ( i = 0; i < b.iterations; i++ ) { + j = i % values.length; + y = flattenBy( values[ j ], opts, clbk ); + if ( typeof y !== 'object' ) { + b.fail( 'should return an ndarray' ); + } + } + b.toc(); + if ( !isndarrayLike( y ) ) { + b.fail( 'should return an ndarray' ); + } + b.pass( 'benchmark finished' ); + b.end(); +}); + +bench( pkg+'::4d:row-major', function benchmark( b ) { + var values; + var opts; + var y; + var i; + var j; + + values = [ + zeros( 'float64', [ 2, 5, 2, 5 ], 'row-major' ), + zeros( 'float32', [ 2, 5, 2, 5 ], 'row-major' ), + zeros( 'int32', [ 2, 5, 2, 5 ], 'row-major' ), + zeros( 'generic', [ 2, 5, 2, 5 ], 'row-major' ) + ]; + opts = { + 'depth': 3, + 'order': 'row-major' + }; + + b.tic(); + for ( i = 0; i < b.iterations; i++ ) { + j = i % values.length; + y = flattenBy( values[ j ], opts, clbk ); + if ( typeof y !== 'object' ) { + b.fail( 'should return an ndarray' ); + } + } + b.toc(); + if ( !isndarrayLike( y ) ) { + b.fail( 'should return an ndarray' ); + } + b.pass( 'benchmark finished' ); + b.end(); +}); + +bench( pkg+'::4d:column-major', function benchmark( b ) { + var values; + var opts; + var y; + var i; + var j; + + values = [ + zeros( 'float64', [ 2, 5, 2, 5 ], 'row-major' ), + zeros( 'float32', [ 2, 5, 2, 5 ], 'row-major' ), + zeros( 'int32', [ 2, 5, 2, 5 ], 'row-major' ), + zeros( 'generic', [ 2, 5, 2, 5 ], 'row-major' ) + ]; + opts = { + 'depth': 3, + 'order': 'column-major' + }; + + b.tic(); + for ( i = 0; i < b.iterations; i++ ) { + j = i % values.length; + y = flattenBy( values[ j ], opts, clbk ); + if ( typeof y !== 'object' ) { + b.fail( 'should return an ndarray' ); + } + } + b.toc(); + if ( !isndarrayLike( y ) ) { + b.fail( 'should return an ndarray' ); + } + b.pass( 'benchmark finished' ); + b.end(); +}); + +bench( pkg+'::5d:row-major', function benchmark( b ) { + var values; + var opts; + var y; + var i; + var j; + + values = [ + zeros( 'float64', [ 2, 5, 2, 5, 1 ], 'row-major' ), + zeros( 'float32', [ 2, 5, 2, 5, 1 ], 'row-major' ), + zeros( 'int32', [ 2, 5, 2, 5, 1 ], 'row-major' ), + zeros( 'generic', [ 2, 5, 2, 5, 1 ], 'row-major' ) + ]; + opts = { + 'depth': 4, + 'order': 'row-major' + }; + + b.tic(); + for ( i = 0; i < b.iterations; i++ ) { + j = i % values.length; + y = flattenBy( values[ j ], opts, clbk ); + if ( typeof y !== 'object' ) { + b.fail( 'should return an ndarray' ); + } + } + b.toc(); + if ( !isndarrayLike( y ) ) { + b.fail( 'should return an ndarray' ); + } + b.pass( 'benchmark finished' ); + b.end(); +}); + +bench( pkg+'::5d:column-major', function benchmark( b ) { + var values; + var opts; + var y; + var i; + var j; + + values = [ + zeros( 'float64', [ 2, 5, 2, 5, 1 ], 'row-major' ), + zeros( 'float32', [ 2, 5, 2, 5, 1 ], 'row-major' ), + zeros( 'int32', [ 2, 5, 2, 5, 1 ], 'row-major' ), + zeros( 'generic', [ 2, 5, 2, 5, 1 ], 'row-major' ) + ]; + opts = { + 'depth': 4, + 'order': 'column-major' + }; + + b.tic(); + for ( i = 0; i < b.iterations; i++ ) { + j = i % values.length; + y = flattenBy( values[ j ], opts, clbk ); + if ( typeof y !== 'object' ) { + b.fail( 'should return an ndarray' ); + } + } + b.toc(); + if ( !isndarrayLike( y ) ) { + b.fail( 'should return an ndarray' ); + } + b.pass( 'benchmark finished' ); + b.end(); +}); diff --git a/lib/node_modules/@stdlib/ndarray/flatten-by/docs/repl.txt b/lib/node_modules/@stdlib/ndarray/flatten-by/docs/repl.txt new file mode 100644 index 000000000000..f6cae4264419 --- /dev/null +++ b/lib/node_modules/@stdlib/ndarray/flatten-by/docs/repl.txt @@ -0,0 +1,49 @@ + +{{alias}}( x[, options], fcn[, thisArg] ) + Flattens an ndarray according to a callback function. + + Parameters + ---------- + x: ndarray + Input ndarray. + + options: Object (optional) + Function options. + + options.depth: integer (optional) + Maximum number of dimensions to flatten. By default, the function + flattens all input ndarray dimensions. + + options.order: string (optional) + Order in which input ndarray elements should be flattened. The following + orders are supported: + + - row-major: flatten in lexicographic order. + - column-major: flatten in colexicographic order. + - same: flatten according to the stated order of the input ndarray. + - any: flatten according to physical layout of the input ndarray data in + memory, regardless of the stated order of the input ndarray. + + Default: 'row-major'. + + fcn: Function + Callback function. + + thisArg: any (optional) + Callback execution context. + + Returns + ------- + out: ndarray + Output ndarray. + + Examples + -------- + > var x = {{alias:@stdlib/ndarray/array}}( [ [ 1.0, 2.0 ], [ 3.0, 4.0 ] ] ); + > function f ( v ) { return v * 2.0 }; + > var y = {{alias}}( x, f ); + > var arr = {{alias:@stdlib/ndarray/to-array}}( y ) + [ 2.0, 4.0, 6.0, 8.0 ] + + See Also + -------- diff --git a/lib/node_modules/@stdlib/ndarray/flatten-by/docs/types/index.d.ts b/lib/node_modules/@stdlib/ndarray/flatten-by/docs/types/index.d.ts new file mode 100644 index 000000000000..a97d0924d204 --- /dev/null +++ b/lib/node_modules/@stdlib/ndarray/flatten-by/docs/types/index.d.ts @@ -0,0 +1,387 @@ +/* +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +// TypeScript Version: 4.1 + +/// + +import { typedndarray, genericndarray, Order } from '@stdlib/types/ndarray'; +import { ComplexLike } from '@stdlib/types/complex'; + +/** +* Callback invoked for each ndarray element. +* +* @returns output value +*/ +type Nullary = ( this: ThisArg ) => V; + +/** +* Callback invoked for each ndarray element. +* +* @param value - current array element +* @returns output value +*/ +type Unary = ( this: ThisArg, value: T ) => V; + +/** +* Callback invoked for each ndarray element. +* +* @param value - current array element +* @param indices - current array element indices +* @returns output value +*/ +type Binary = ( this: ThisArg, value: T, indices: Array ) => V; + +/** +* Callback invoked for each ndarray element. +* +* @param value - current array element +* @param indices - current array element indices +* @param arr - input array +* @returns output value +*/ +type Ternary = ( this: ThisArg, value: T, indices: Array, arr: U ) => V; + +/** +* Callback invoked for each ndarray element. +* +* @param value - current array element +* @param indices - current array element indices +* @param arr - input array +* @returns output value +*/ +type Callback = Nullary | Unary | Binary | Ternary; + +/** +* Interface defining function options. +*/ +interface Options { + /** + * Maximum number of dimensions to flatten. + * + * ## Notes + * + * - By default, the function flattens all input ndarray dimensions. + */ + depth?: number; + + /** + * Order in which input ndarray elements should be flattened. + * + * ## Notes + * + * - The following orders are supported: + * + * - **row-major**: flatten in lexicographic order. + * - **column-major**: flatten in colexicographic order. + * - **same**: flatten according to the stated order of the input ndarray. + * - **any**: flatten according to the physical layout of the input ndarray data in memory, regardless of the stated order of the input ndarray. + * + * - Default: 'row-major'. + */ + order?: Order | 'same' | 'any'; +} + +/** +* Flattens an ndarray according to a callback function. +* +* @param x - input ndarray +* @param fcn - callback function +* @param thisArg - callback execution context +* @returns output ndarray +* +* @example +* var Float64Array = require( '@stdlib/array/float64' ); +* var ndarray = require( '@stdlib/ndarray/ctor' ); +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* +* function scale( value ) { +* return value * 2.0; +* } +* +* var buffer = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); +* var shape = [ 3, 1, 2 ]; +* var strides = [ 2, 2, 1 ]; +* var offset = 0; +* +* var x = ndarray( 'float64', buffer, shape, strides, offset, 'row-major' ); +* // return +* +* var y = flattenBy( x, scale ); +* // returns +* +* var arr = ndarray2array( y ); +* // returns [ 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 ] +*/ +declare function flattenBy = typedndarray, ThisArg = unknown>( x: T, fcn: Callback, thisArg?: ThisParameterType> ): T; + +/** +* Flattens an ndarray according to a callback function. +* +* @param x - input ndarray +* @param fcn - callback function +* @param thisArg - callback execution context +* @returns output ndarray +* +* @example +* var Complex64Array = require( '@stdlib/array/complex64' ); +* var ndarray = require( '@stdlib/ndarray/ctor' ); +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* +* function identity( value ) { +* return value; +* } +* +* var buffer = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); +* var shape = [ 1, 3 ]; +* var strides = [ 3, 1 ]; +* var offset = 0; +* +* var x = ndarray( 'complex64', buffer, shape, strides, offset, 'row-major' ); +* // return +* +* var y = flattenBy( x, identity ); +* // returns +*/ +declare function flattenBy = typedndarray, ThisArg = unknown>( x: U, fcn: Callback, thisArg?: ThisParameterType> ): U; + +/** +* Flattens an ndarray according to a callback function. +* +* @param x - input ndarray +* @param fcn - callback function +* @param thisArg - callback execution context +* @returns output ndarray +* +* @example +* var BooleanArray = require( '@stdlib/array/bool' ); +* var ndarray = require( '@stdlib/ndarray/ctor' ); +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* +* function invert( value ) { +* return !value; +* } +* +* var buffer = new BooleanArray( [ true, false, true, false, true, false ] ); +* var shape = [ 3, 1, 2 ]; +* var strides = [ 2, 2, 1 ]; +* var offset = 0; +* +* var x = ndarray( 'uint8c', buffer, shape, strides, offset, 'row-major' ); +* // return +* +* var y = flattenBy( x, scale ); +* // returns +* +* var arr = ndarray2array( y ); +* // returns [ false, true, false, true, false, true ] +*/ +declare function flattenBy = typedndarray, ThisArg = unknown>( x: T, fcn: Callback, thisArg?: ThisParameterType> ): T; + +/** +* Flattens an ndarray according to a callback function. +* +* @param x - input ndarray +* @param fcn - callback function +* @param thisArg - callback execution context +* @returns output ndarray +* +* @example +* var ndarray = require( '@stdlib/ndarray/ctor' ); +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* +* function scale( value ) { +* return value * 2.0; +* } +* +* var buffer = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ]; +* var shape = [ 3, 1, 2 ]; +* var strides = [ 2, 2, 1 ]; +* var offset = 0; +* +* var x = ndarray( 'generic', buffer, shape, strides, offset, 'row-major' ); +* // return +* +* var y = flattenBy( x, scale ); +* // returns +* +* var arr = ndarray2array( y ); +* // returns [ 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 ] +*/ +declare function flattenBy = genericndarray, V = unknown, W extends genericndarray = genericndarray, ThisArg = unknown>( x: U, fcn: Callback, thisArg?: ThisParameterType> ): W; + +/** +* Flattens an ndarray according to a callback function. +* +* @param x - input ndarray +* @param options - function options +* @param options.depth - maximum number of dimensions to flatten +* @param options.order - order in which input ndarray elements should be flattened +* @param fcn - callback function +* @param thisArg - callback execution context +* @returns output ndarray +* +* @example +* var Float64Array = require( '@stdlib/array/float64' ); +* var ndarray = require( '@stdlib/ndarray/ctor' ); +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* +* function scale( value ) { +* return value * 2.0; +* } +* +* var buffer = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); +* var shape = [ 3, 1, 2 ]; +* var strides = [ 2, 2, 1 ]; +* var offset = 0; +* +* var x = ndarray( 'float64', buffer, shape, strides, offset, 'row-major' ); +* // return +* +* var opts = { +* 'depth': 2 +* }; +* +* var y = flattenBy( x, opts, scale ); +* // returns +* +* var arr = ndarray2array( y ); +* // returns [ 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 ] +*/ +declare function flattenBy = typedndarray, ThisArg = unknown>( x: T, options: Options, fcn: Callback, thisArg?: ThisParameterType> ): T; + +/** +* Flattens an ndarray according to a callback function. +* +* @param x - input ndarray +* @param options - function options +* @param options.depth - maximum number of dimensions to flatten +* @param options.order - order in which input ndarray elements should be flattened +* @param fcn - callback function +* @param thisArg - callback execution context +* @returns output ndarray +* +* @example +* var Complex64Array = require( '@stdlib/array/complex64' ); +* var ndarray = require( '@stdlib/ndarray/ctor' ); +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* +* function identity( value ) { +* return value; +* } +* +* var buffer = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); +* var shape = [ 1, 3 ]; +* var strides = [ 3, 1 ]; +* var offset = 0; +* +* var x = ndarray( 'complex64', buffer, shape, strides, offset, 'row-major' ); +* // return +* +* var opts = { +* 'depth': 1 +* }; +* +* var y = flattenBy( x, opts, identity ); +* // returns +*/ +declare function flattenBy = typedndarray, ThisArg = unknown>( x: U, options: Options, fcn: Callback, thisArg?: ThisParameterType> ): U; + +/** +* Flattens an ndarray according to a callback function. +* +* @param x - input ndarray +* @param options - function options +* @param options.depth - maximum number of dimensions to flatten +* @param options.order - order in which input ndarray elements should be flattened +* @param fcn - callback function +* @param thisArg - callback execution context +* @returns output ndarray +* +* @example +* var BooleanArray = require( '@stdlib/array/bool' ); +* var ndarray = require( '@stdlib/ndarray/ctor' ); +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* +* function invert( value ) { +* return !value; +* } +* +* var buffer = new BooleanArray( [ true, false, true, false, true, false ] ); +* var shape = [ 3, 1, 2 ]; +* var strides = [ 2, 2, 1 ]; +* var offset = 0; +* +* var x = ndarray( 'uint8c', buffer, shape, strides, offset, 'row-major' ); +* // return +* +* var opts = { +* 'depth': 2 +* }; +* +* var y = flattenBy( x, opts, scale ); +* // returns +* +* var arr = ndarray2array( y ); +* // returns [ false, true, false, true, false, true ] +*/ +declare function flattenBy = typedndarray, ThisArg = unknown>( x: T, options: Options, fcn: Callback, thisArg?: ThisParameterType> ): T; + +/** +* Flattens an ndarray according to a callback function. +* +* @param x - input ndarray +* @param options - function options +* @param options.depth - maximum number of dimensions to flatten +* @param options.order - order in which input ndarray elements should be flattened +* @param fcn - callback function +* @param thisArg - callback execution context +* @returns output ndarray +* +* @example +* var ndarray = require( '@stdlib/ndarray/ctor' ); +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* +* function scale( value ) { +* return value * 2.0; +* } +* +* var buffer = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ]; +* var shape = [ 3, 1, 2 ]; +* var strides = [ 2, 2, 1 ]; +* var offset = 0; +* +* var x = ndarray( 'generic', buffer, shape, strides, offset, 'row-major' ); +* // return +* +* var opts = { +* 'depth': 2 +* }; +* +* var y = flattenBy( x, opts, scale ); +* // returns +* +* var arr = ndarray2array( y ); +* // returns [ 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 ] +*/ +declare function flattenBy = genericndarray, V = unknown, W extends genericndarray = genericndarray, ThisArg = unknown>( x: U, options: Options, fcn: Callback, thisArg?: ThisParameterType> ): W; + + +// EXPORTS // + +export = flattenBy; diff --git a/lib/node_modules/@stdlib/ndarray/flatten-by/docs/types/test.ts b/lib/node_modules/@stdlib/ndarray/flatten-by/docs/types/test.ts new file mode 100644 index 000000000000..d0eec5992d8c --- /dev/null +++ b/lib/node_modules/@stdlib/ndarray/flatten-by/docs/types/test.ts @@ -0,0 +1,209 @@ +/* +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +import empty = require( '@stdlib/ndarray/base/empty' ); +import zeros = require( '@stdlib/ndarray/base/zeros' ); +import flattenBy = require( './index' ); + +/** +* Evaluates the identity function. +* +* @param x - input value +* @returns input value +*/ +function identity( x: any ): any { + return x; +} + +// The function returns an ndarray... +{ + const sh = [ 2, 2 ]; + const ord = 'row-major'; + + flattenBy( zeros( 'float64', sh, ord ), identity ); // $ExpectType float64ndarray + flattenBy( zeros( 'float64', sh, ord ), {}, identity ); // $ExpectType float64ndarray + flattenBy( zeros( 'float64', sh, ord ), identity, {} ); // $ExpectType float64ndarray + flattenBy( zeros( 'float64', sh, ord ), {}, identity, {} ); // $ExpectType float64ndarray + flattenBy( zeros( 'float32', sh, ord ), identity ); // $ExpectType float32ndarray + flattenBy( zeros( 'float32', sh, ord ), {}, identity ); // $ExpectType float32ndarray + flattenBy( zeros( 'float32', sh, ord ), identity, {} ); // $ExpectType float32ndarray + flattenBy( zeros( 'float32', sh, ord ), {}, identity, {} ); // $ExpectType float32ndarray + flattenBy( zeros( 'complex64', sh, ord ), identity ); // $ExpectType complex64ndarray + flattenBy( zeros( 'complex64', sh, ord ), {}, identity ); // $ExpectType complex64ndarray + flattenBy( zeros( 'complex64', sh, ord ), identity, {} ); // $ExpectType complex64ndarray + flattenBy( zeros( 'complex64', sh, ord ), {}, identity, {} ); // $ExpectType complex64ndarray + flattenBy( zeros( 'complex128', sh, ord ), identity ); // $ExpectType complex128ndarray + flattenBy( zeros( 'complex128', sh, ord ), {}, identity ); // $ExpectType complex128ndarray + flattenBy( zeros( 'complex128', sh, ord ), identity, {} ); // $ExpectType complex128ndarray + flattenBy( zeros( 'complex128', sh, ord ), {}, identity, {} ); // $ExpectType complex128ndarray + flattenBy( zeros( 'int32', sh, ord ), identity ); // $ExpectType int32ndarray + flattenBy( zeros( 'int32', sh, ord ), {}, identity ); // $ExpectType int32ndarray + flattenBy( zeros( 'int32', sh, ord ), identity, {} ); // $ExpectType int32ndarray + flattenBy( zeros( 'int32', sh, ord ), {}, identity, {} ); // $ExpectType int32ndarray + flattenBy( zeros( 'int16', sh, ord ), identity ); // $ExpectType int16ndarray + flattenBy( zeros( 'int16', sh, ord ), {}, identity ); // $ExpectType int16ndarray + flattenBy( zeros( 'int16', sh, ord ), identity, {} ); // $ExpectType int16ndarray + flattenBy( zeros( 'int16', sh, ord ), {}, identity, {} ); // $ExpectType int16ndarray + flattenBy( zeros( 'int8', sh, ord ), identity ); // $ExpectType int8ndarray + flattenBy( zeros( 'int8', sh, ord ), {}, identity ); // $ExpectType int8ndarray + flattenBy( zeros( 'int8', sh, ord ), identity, {} ); // $ExpectType int8ndarray + flattenBy( zeros( 'int8', sh, ord ), {}, identity, {} ); // $ExpectType int8ndarray + flattenBy( zeros( 'uint32', sh, ord ), identity ); // $ExpectType uint32ndarray + flattenBy( zeros( 'uint32', sh, ord ), {}, identity ); // $ExpectType uint32ndarray + flattenBy( zeros( 'uint32', sh, ord ), identity, {} ); // $ExpectType uint32ndarray + flattenBy( zeros( 'uint16', sh, ord ), identity ); // $ExpectType uint16ndarray + flattenBy( zeros( 'uint16', sh, ord ), {}, identity ); // $ExpectType uint16ndarray + flattenBy( zeros( 'uint16', sh, ord ), identity, {} ); // $ExpectType uint16ndarray + flattenBy( zeros( 'uint16', sh, ord ), {}, identity, {} ); // $ExpectType uint16ndarray + flattenBy( zeros( 'uint8', sh, ord ), identity ); // $ExpectType uint8ndarray + flattenBy( zeros( 'uint8', sh, ord ), {}, identity ); // $ExpectType uint8ndarray + flattenBy( zeros( 'uint8', sh, ord ), identity, {} ); // $ExpectType uint8ndarray + flattenBy( zeros( 'uint8', sh, ord ), {}, identity, {} ); // $ExpectType uint8ndarray + flattenBy( zeros( 'uint8c', sh, ord ), identity ); // $ExpectType uint8cndarray + flattenBy( zeros( 'uint8c', sh, ord ), {}, identity ); // $ExpectType uint8cndarray + flattenBy( zeros( 'uint8c', sh, ord ), identity, {} ); // $ExpectType uint8cndarray + flattenBy( zeros( 'uint8c', sh, ord ), {}, identity, {} ); // $ExpectType uint8cndarray + flattenBy( empty( 'bool', sh, ord ), identity ); // $ExpectType boolndarray + flattenBy( empty( 'bool', sh, ord ), {}, identity ); // $ExpectType boolndarray + flattenBy( empty( 'bool', sh, ord ), identity, {} ); // $ExpectType boolndarray + flattenBy( empty( 'bool', sh, ord ), {}, identity, {} ); // $ExpectType boolndarray + flattenBy( zeros( 'generic', sh, ord ), identity ); // $ExpectType genericndarray + flattenBy( zeros( 'generic', sh, ord ), {}, identity ); // $ExpectType genericndarray + flattenBy( zeros( 'generic', sh, ord ), identity, {} ); // $ExpectType genericndarray + flattenBy( zeros( 'generic', sh, ord ), {}, identity, {} ); // $ExpectType genericndarray +} + +// The compiler throws an error if the function is provided a first argument which is not an ndarray... +{ + flattenBy( 5, identity ); // $ExpectError + flattenBy( true, identity ); // $ExpectError + flattenBy( false, identity ); // $ExpectError + flattenBy( null, identity ); // $ExpectError + flattenBy( undefined, identity ); // $ExpectError + flattenBy( {}, identity ); // $ExpectError + flattenBy( [ 1 ], identity ); // $ExpectError + flattenBy( ( x: number ): number => x, identity ); // $ExpectError + + flattenBy( 5, {}, identity ); // $ExpectError + flattenBy( true, {}, identity ); // $ExpectError + flattenBy( false, {}, identity ); // $ExpectError + flattenBy( null, {}, identity ); // $ExpectError + flattenBy( undefined, {}, identity ); // $ExpectError + flattenBy( {}, {}, identity ); // $ExpectError + flattenBy( [ 1 ], {}, identity ); // $ExpectError + flattenBy( ( x: number ): number => x, {}, identity ); // $ExpectError + + flattenBy( 5, identity, {} ); // $ExpectError + flattenBy( true, identity, {} ); // $ExpectError + flattenBy( false, identity, {} ); // $ExpectError + flattenBy( null, identity, {} ); // $ExpectError + flattenBy( undefined, identity, {} ); // $ExpectError + flattenBy( {}, identity, {} ); // $ExpectError + flattenBy( [ 1 ], identity, {} ); // $ExpectError + flattenBy( ( x: number ): number => x, identity, {} ); // $ExpectError + + flattenBy( 5, {}, identity, {} ); // $ExpectError + flattenBy( true, {}, identity, {} ); // $ExpectError + flattenBy( false, {}, identity, {} ); // $ExpectError + flattenBy( null, {}, identity, {} ); // $ExpectError + flattenBy( undefined, {}, identity, {} ); // $ExpectError + flattenBy( {}, {}, identity, {} ); // $ExpectError + flattenBy( [ 1 ], {}, identity, {} ); // $ExpectError + flattenBy( ( x: number ): number => x, {}, identity, {} ); // $ExpectError +} + +// The compiler throws an error if the function is provided an options argument which is not an object... +{ + const x = zeros( 'generic', [ 2, 2, 2 ], 'row-major' ); + + flattenBy( x, '5', identity ); // $ExpectError + flattenBy( x, true, identity ); // $ExpectError + flattenBy( x, false, identity ); // $ExpectError + flattenBy( x, null, identity ); // $ExpectError + flattenBy( x, [ 1 ], identity ); // $ExpectError + + flattenBy( x, '5', identity, {} ); // $ExpectError + flattenBy( x, true, identity, {} ); // $ExpectError + flattenBy( x, false, identity, {} ); // $ExpectError + flattenBy( x, null, identity, {} ); // $ExpectError + flattenBy( x, [ 1 ], identity, {} ); // $ExpectError +} + +// The compiler throws an error if the function is provided a second argument with invalid `depth` option... +{ + const x = zeros( 'generic', [ 2, 2, 2 ], 'row-major' ); + + flattenBy( x, { 'depth': '5' }, identity ); // $ExpectError + flattenBy( x, { 'depth': true }, identity ); // $ExpectError + flattenBy( x, { 'depth': false }, identity ); // $ExpectError + flattenBy( x, { 'depth': null }, identity ); // $ExpectError + flattenBy( x, { 'depth': [ 1 ] }, identity ); // $ExpectError + + flattenBy( x, { 'depth': '5' }, identity, {} ); // $ExpectError + flattenBy( x, { 'depth': true }, identity, {} ); // $ExpectError + flattenBy( x, { 'depth': false }, identity, {} ); // $ExpectError + flattenBy( x, { 'depth': null }, identity, {} ); // $ExpectError + flattenBy( x, { 'depth': [ 1 ] }, identity, {} ); // $ExpectError +} + +// The compiler throws an error if the function is provided a second argument with invalid `order` option... +{ + const x = zeros( 'generic', [ 2, 2, 2 ], 'row-major' ); + + flattenBy( x, { 'order': '5' }, identity ); // $ExpectError + flattenBy( x, { 'order': true }, identity ); // $ExpectError + flattenBy( x, { 'order': false }, identity ); // $ExpectError + flattenBy( x, { 'order': null }, identity ); // $ExpectError + flattenBy( x, { 'order': [ 1 ] }, identity ); // $ExpectError + + flattenBy( x, { 'order': '5' }, identity, {} ); // $ExpectError + flattenBy( x, { 'order': true }, identity, {} ); // $ExpectError + flattenBy( x, { 'order': false }, identity, {} ); // $ExpectError + flattenBy( x, { 'order': null }, identity, {} ); // $ExpectError + flattenBy( x, { 'order': [ 1 ] }, identity, {} ); // $ExpectError +} + +// The compiler throws an error if the function is provided a callback which is not a function... +{ + const x = zeros( 'generic', [ 2, 2 ], 'row-major' ); + + flattenBy( x, {}, '5' ); // $ExpectError + flattenBy( x, {}, true ); // $ExpectError + flattenBy( x, {}, false ); // $ExpectError + flattenBy( x, {}, null ); // $ExpectError + flattenBy( x, {}, undefined ); // $ExpectError + flattenBy( x, {}, {} ); // $ExpectError + flattenBy( x, {}, [ 1 ] ); // $ExpectError + + flattenBy( x, {}, '5', {} ); // $ExpectError + flattenBy( x, {}, true, {} ); // $ExpectError + flattenBy( x, {}, false, {} ); // $ExpectError + flattenBy( x, {}, null, {} ); // $ExpectError + flattenBy( x, {}, undefined, {} ); // $ExpectError + flattenBy( x, {}, {}, {} ); // $ExpectError + flattenBy( x, {}, [ 1 ], {} ); // $ExpectError +} + +// The compiler throws an error if the function is provided an unsupported number of arguments... +{ + const x = zeros( 'generic', [ 2, 2, 2 ], 'row-major' ); + + flattenBy(); // $ExpectError + flattenBy( x ); // $ExpectError + flattenBy( x, {}, ( x: number ): number => x, {}, {} ); // $ExpectError +} diff --git a/lib/node_modules/@stdlib/ndarray/flatten-by/examples/index.js b/lib/node_modules/@stdlib/ndarray/flatten-by/examples/index.js new file mode 100644 index 000000000000..d99b9ccc65e3 --- /dev/null +++ b/lib/node_modules/@stdlib/ndarray/flatten-by/examples/index.js @@ -0,0 +1,41 @@ +/** +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +'use strict'; + +var discreteUniform = require( '@stdlib/random/array/discrete-uniform' ); +var array = require( '@stdlib/ndarray/array' ); +var ndarray2array = require( '@stdlib/ndarray/to-array' ); +var flattenBy = require( './../lib' ); + +function scale( value ) { + return value * 2.0; +} + +var xbuf = discreteUniform( 12, -100, 100, { + 'dtype': 'generic' +}); + +var x = array( xbuf, { + 'shape': [ 2, 2, 3 ], + 'dtype': 'generic' +}); +console.log( ndarray2array( x ) ); + +var y = flattenBy( x, scale ); +console.log( ndarray2array( y ) ); diff --git a/lib/node_modules/@stdlib/ndarray/flatten-by/lib/index.js b/lib/node_modules/@stdlib/ndarray/flatten-by/lib/index.js new file mode 100644 index 000000000000..204d867de17b --- /dev/null +++ b/lib/node_modules/@stdlib/ndarray/flatten-by/lib/index.js @@ -0,0 +1,52 @@ +/** +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +'use strict'; + +/** +* Flatten an ndarray according to a callback function. +* +* @module @stdlib/ndarray/flatten-by +* +* @example +* var array = require( '@stdlib/ndarray/array' ); +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* var flattenBy = require( '@stdlib/ndarray/flatten-by' ); +* +* function scale( value ) { +* return value * 2.0; +* } +* +* var x = array( [ [ [ 1.0, 2.0 ] ], [ [ 3.0, 4.0 ] ], [ [ 5.0, 6.0 ] ] ] ); +* // return +* +* var y = flattenBy( x, scale ); +* // returns +* +* var arr = ndarray2array( y ); +* // returns [ 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 ] +*/ + +// MODULES // + +var main = require( './main.js' ); + + +// EXPORTS // + +module.exports = main; diff --git a/lib/node_modules/@stdlib/ndarray/flatten-by/lib/main.js b/lib/node_modules/@stdlib/ndarray/flatten-by/lib/main.js new file mode 100644 index 000000000000..b06674f4df5a --- /dev/null +++ b/lib/node_modules/@stdlib/ndarray/flatten-by/lib/main.js @@ -0,0 +1,187 @@ +/** +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +'use strict'; + +// MODULES // + +var isPlainObject = require( '@stdlib/assert/is-plain-object' ); +var isFunction = require( '@stdlib/assert/is-function' ); +var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' ); +var hasOwnProp = require( '@stdlib/assert/has-own-property' ); +var isNonNegativeInteger = require( '@stdlib/assert/is-nonnegative-integer' ); +var isOrder = require( '@stdlib/ndarray/base/assert/is-order' ); +var getShape = require( '@stdlib/ndarray/shape' ); +var getOrder = require( '@stdlib/ndarray/order' ); +var getStrides = require( '@stdlib/ndarray/strides' ); +var getData = require( '@stdlib/ndarray/base/data-buffer' ); +var getDType = require( '@stdlib/ndarray/base/dtype' ); +var shape2strides = require( '@stdlib/ndarray/base/shape2strides' ); +var strides2order = require( '@stdlib/ndarray/base/strides2order' ); +var flattenShape = require( '@stdlib/ndarray/base/flatten-shape' ); +var map = require( '@stdlib/ndarray/base/map' ); +var emptyLike = require( '@stdlib/ndarray/empty-like' ); +var ndarray = require( '@stdlib/ndarray/ctor' ); +var format = require( '@stdlib/string/format' ); + + +// VARIABLES // + +var ROW_MAJOR = 'row-major'; +var COL_MAJOR = 'column-major'; + + +// MAIN // + +/** +* Flattens an ndarray according to a callback function. +* +* @param {ndarray} x - input ndarray +* @param {Options} [options] - function options +* @param {NonNegativeInteger} [options.depth] - maximum number of dimensions to flatten +* @param {string} [options.order='row-major'] - order in which input ndarray elements should be flattened +* @param {Function} fcn - callback function +* @param {*} [thisArg] - callback execution context +* @throws {TypeError} first argument must be an ndarray-like object +* @throws {TypeError} options argument must be an object +* @throws {TypeError} callback argument must be a function +* @throws {TypeError} must provide valid options +* @returns {ndarray} output ndarray +* +* @example +* var array = require( '@stdlib/ndarray/array' ); +* var ndarray2array = require( '@stdlib/ndarray/to-array' ); +* +* function scale( value ) { +* return value * 2.0; +* } +* +* var x = array( [ [ [ 1.0, 2.0 ] ], [ [ 3.0, 4.0 ] ], [ [ 5.0, 6.0 ] ] ] ); +* // return +* +* var y = flattenBy( x, scale ); +* // returns +* +* var arr = ndarray2array( y ); +* // returns [ 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 ] +*/ +function flattenBy( x, options, fcn, thisArg ) { + var hasOpts; + var nargs; + var view; + var opts; + var ctx; + var xsh; + var cb; + var st; + var y; + var o; + + if ( !isndarrayLike( x ) ) { + throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) ); + } + nargs = arguments.length; + xsh = getShape( x ); + hasOpts = false; + + // Define default options: + opts = { + 'depth': xsh.length, // by default, flatten to a one-dimensional ndarray + 'order': ROW_MAJOR // by default, flatten in lexicographic order (i.e., trailing dimensions first; e.g., if `x` is a matrix, flatten row-by-row) + }; + + // Case: flattenBy( x, fcn ) + if ( nargs <= 2 ) { + cb = options; + } + // Case: flattenBy( x, ???, ??? ) + else if ( nargs === 3 ) { + // Case: flattenBy( x, fcn, thisArg ) + if ( isFunction( options ) ) { + cb = options; + ctx = fcn; + } + // Case: flattenBy( x, options, fcn ) + else { + hasOpts = true; + cb = fcn; + } + } + // Case: flattenBy( x, options, fcn, thisArg ) + else { + hasOpts = true; + cb = fcn; + ctx = thisArg; + } + if ( !isFunction( cb ) ) { + throw new TypeError( format( 'invalid argument. Callback argument must be a function. Value: `%s`.', cb ) ); + } + if ( hasOpts ) { + if ( !isPlainObject( options ) ) { + throw new TypeError( format( 'invalid argument. Options argument must be an object. Value: `%s`.', options ) ); + } + if ( hasOwnProp( options, 'depth' ) ) { + if ( !isNonNegativeInteger( options.depth ) ) { + throw new TypeError( format( 'invalid option. `%s` option must be a nonnegative integer. Option: `%s`.', options.depth ) ); + } + opts.depth = options.depth; + } + if ( hasOwnProp( options, 'order' ) ) { + if ( options.order === 'any' ) { + // When 'any', we want to flatten according to the physical layout of the data in memory... + o = strides2order( getStrides( x ) ); + if ( o === 1 ) { + // Data is currently arranged in row-major order: + opts.order = ROW_MAJOR; + } else if ( o === 2 ) { + // Data is currently arranged in column-major order: + opts.order = COL_MAJOR; + } else { // o === 0 || o === 3 (i.e., neither row- nor column-major || both row- and column-major + // When the data is either both row- and column-major (e.g., a one-dimensional ndarray) or neither row- nor column-major (e.g., unordered strides), fallback to flattening according to the stated order of the input ndarray: + opts.order = getOrder( x ); + } + } else if ( options.order === 'same' ) { + // When 'same', we want to flatten according to the stated order of the input ndarray: + opts.order = getOrder( x ); + } else if ( isOrder( options.order ) ) { + // When provided a specific order, flatten according to that order regardless of the order of the input ndarray: + opts.order = options.order; + } else { + throw new TypeError( format( 'invalid option. `%s` option must be a recognized order. Option: `%s`.', 'order', options.order ) ); + } + } + } + // Create an output ndarray having contiguous memory: + y = emptyLike( x, { + 'shape': flattenShape( xsh, opts.depth ), + 'order': opts.order + }); + + // Create a view on top of output ndarray having the same shape as the input ndarray: + st = ( xsh.length > 0 ) ? shape2strides( xsh, opts.order ) : [ 0 ]; + view = ndarray( getDType( y ), getData( y ), xsh, st, 0, opts.order ); + + // Transform and assign elements to the output ndarray: + map( [ x, view ], cb, ctx ); + return y; +} + + +// EXPORTS // + +module.exports = flattenBy; diff --git a/lib/node_modules/@stdlib/ndarray/flatten-by/package.json b/lib/node_modules/@stdlib/ndarray/flatten-by/package.json new file mode 100644 index 000000000000..1317829b37c8 --- /dev/null +++ b/lib/node_modules/@stdlib/ndarray/flatten-by/package.json @@ -0,0 +1,65 @@ +{ + "name": "@stdlib/ndarray/flatten-by", + "version": "0.0.0", + "description": "Flatten an ndarray according to a callback function.", + "license": "Apache-2.0", + "author": { + "name": "The Stdlib Authors", + "url": "https://github.com/stdlib-js/stdlib/graphs/contributors" + }, + "contributors": [ + { + "name": "The Stdlib Authors", + "url": "https://github.com/stdlib-js/stdlib/graphs/contributors" + } + ], + "main": "./lib", + "directories": { + "benchmark": "./benchmark", + "doc": "./docs", + "example": "./examples", + "lib": "./lib", + "test": "./test" + }, + "types": "./docs/types", + "scripts": {}, + "homepage": "https://github.com/stdlib-js/stdlib", + "repository": { + "type": "git", + "url": "git://github.com/stdlib-js/stdlib.git" + }, + "bugs": { + "url": "https://github.com/stdlib-js/stdlib/issues" + }, + "dependencies": {}, + "devDependencies": {}, + "engines": { + "node": ">=0.10.0", + "npm": ">2.7.0" + }, + "os": [ + "aix", + "darwin", + "freebsd", + "linux", + "macos", + "openbsd", + "sunos", + "win32", + "windows" + ], + "keywords": [ + "stdlib", + "multidimensional", + "array", + "ndarray", + "tensor", + "matrix", + "flat", + "flatten", + "map", + "copy", + "transform" + ], + "__stdlib__": {} +} diff --git a/lib/node_modules/@stdlib/ndarray/flatten-by/test/test.js b/lib/node_modules/@stdlib/ndarray/flatten-by/test/test.js new file mode 100644 index 000000000000..9b306deb95f9 --- /dev/null +++ b/lib/node_modules/@stdlib/ndarray/flatten-by/test/test.js @@ -0,0 +1,1991 @@ +/** +* @license Apache-2.0 +* +* Copyright (c) 2025 The Stdlib Authors. +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +/* eslint-disable max-len */ + +'use strict'; + +// MODULES // + +var tape = require( 'tape' ); +var isSameFloat64Array = require( '@stdlib/assert/is-same-float64array' ); +var zeros = require( '@stdlib/ndarray/zeros' ); +var ndarray = require( '@stdlib/ndarray/ctor' ); +var Float64Array = require( '@stdlib/array/float64' ); +var identity = require( '@stdlib/number/float64/base/identity' ); +var getDType = require( '@stdlib/ndarray/dtype' ); +var getShape = require( '@stdlib/ndarray/shape' ); +var getOrder = require( '@stdlib/ndarray/order' ); +var getData = require( '@stdlib/ndarray/data-buffer' ); +var shape2strides = require( '@stdlib/ndarray/base/shape2strides' ); +var scalar2ndarray = require( '@stdlib/ndarray/from-scalar' ); +var strides2offset = require( '@stdlib/ndarray/base/strides2offset' ); +var ndarray2array = require( '@stdlib/ndarray/to-array' ); +var flattenBy = require( './../lib' ); + + +// TESTS // + +tape( 'main export is a function', function test( t ) { + t.ok( true, __filename ); + t.strictEqual( typeof flattenBy, 'function', 'main export is a function' ); + t.end(); +}); + +tape( 'the function throws an error if provided a first argument which is not an ndarray', function test( t ) { + var values; + var i; + + values = [ + '5', + 5, + NaN, + true, + false, + null, + void 0, + [], + {}, + function noop() {} + ]; + for ( i = 0; i < values.length; i++ ) { + t.throws( badValue( values[ i ] ), TypeError, 'throws an error when provided ' + values[ i ] ); + } + t.end(); + + function badValue( value ) { + return function badValue() { + flattenBy( value, identity ); + }; + } +}); + +tape( 'the function throws an error if provided a first argument which is not an ndarray (options)', function test( t ) { + var values; + var i; + + values = [ + '5', + 5, + NaN, + true, + false, + null, + void 0, + [], + {}, + function noop() {} + ]; + for ( i = 0; i < values.length; i++ ) { + t.throws( badValue( values[ i ] ), TypeError, 'throws an error when provided ' + values[ i ] ); + } + t.end(); + + function badValue( value ) { + return function badValue() { + flattenBy( value, {}, identity ); + }; + } +}); + +tape( 'the function throws an error if provided a first argument which is not an ndarray (thisArg)', function test( t ) { + var values; + var i; + + values = [ + '5', + 5, + NaN, + true, + false, + null, + void 0, + [], + {}, + function noop() {} + ]; + for ( i = 0; i < values.length; i++ ) { + t.throws( badValue( values[ i ] ), TypeError, 'throws an error when provided ' + values[ i ] ); + } + t.end(); + + function badValue( value ) { + return function badValue() { + flattenBy( value, identity, {} ); + }; + } +}); + +tape( 'the function throws an error if provided a first argument which is not an ndarray (options, thisArg)', function test( t ) { + var values; + var i; + + values = [ + '5', + 5, + NaN, + true, + false, + null, + void 0, + [], + {}, + function noop() {} + ]; + for ( i = 0; i < values.length; i++ ) { + t.throws( badValue( values[ i ] ), TypeError, 'throws an error when provided ' + values[ i ] ); + } + t.end(); + + function badValue( value ) { + return function badValue() { + flattenBy( value, {}, identity, {} ); + }; + } +}); + +tape( 'the function throws an error if provided an options argument which is not an object', function test( t ) { + var values; + var i; + + values = [ + '5', + 5, + NaN, + true, + false, + null, + void 0 + ]; + for ( i = 0; i < values.length; i++ ) { + t.throws( badValue( values[ i ] ), TypeError, 'throws an error when provided ' + values[ i ] ); + } + t.end(); + + function badValue( value ) { + return function badValue() { + flattenBy( zeros( [ 2, 2, 2 ] ), value, identity ); + }; + } +}); + +tape( 'the function throws an error if provided an options argument which is not an object (thisArg)', function test( t ) { + var values; + var i; + + values = [ + '5', + 5, + NaN, + true, + false, + null, + void 0 + ]; + for ( i = 0; i < values.length; i++ ) { + t.throws( badValue( values[ i ] ), TypeError, 'throws an error when provided ' + values[ i ] ); + } + t.end(); + + function badValue( value ) { + return function badValue() { + flattenBy( zeros( [ 2, 2, 2 ] ), value, identity, {} ); + }; + } +}); + +tape( 'the function throws an error if provided an invalid `depth` option', function test( t ) { + var values; + var opts; + var i; + + values = [ + '5', + -5, + NaN, + true, + false, + null, + void 0, + [], + {}, + function noop() {} + ]; + for ( i = 0; i < values.length; i++ ) { + t.throws( badValue( values[ i ] ), TypeError, 'throws an error when provided ' + values[ i ] ); + } + t.end(); + + function badValue( value ) { + return function badValue() { + opts = { + 'depth': value + }; + flattenBy( zeros( [ 2 ] ), opts, identity ); + }; + } +}); + +tape( 'the function throws an error if provided an invalid `order` option', function test( t ) { + var values; + var opts; + var i; + + values = [ + '5', + NaN, + true, + false, + null, + void 0, + [], + {}, + function noop() {} + ]; + for ( i = 0; i < values.length; i++ ) { + t.throws( badValue( values[ i ] ), TypeError, 'throws an error when provided ' + values[ i ] ); + } + t.end(); + + function badValue( value ) { + return function badValue() { + opts = { + 'order': value + }; + flattenBy( zeros( [ 2 ] ), opts, identity ); + }; + } +}); + +tape( 'the function throws an error if provided a callback argument which is not a function', function test( t ) { + var values; + var i; + + values = [ + '5', + 5, + NaN, + true, + false, + null, + void 0 + ]; + for ( i = 0; i < values.length; i++ ) { + t.throws( badValue( values[ i ] ), TypeError, 'throws an error when provided ' + values[ i ] ); + } + t.end(); + + function badValue( value ) { + return function badValue() { + flattenBy( zeros( [ 2, 2, 2 ] ), {}, value ); + }; + } +}); + +tape( 'the function throws an error if provided a callback argument which is not a function (thisArg)', function test( t ) { + var values; + var i; + + values = [ + '5', + 5, + NaN, + true, + false, + null, + void 0 + ]; + for ( i = 0; i < values.length; i++ ) { + t.throws( badValue( values[ i ] ), TypeError, 'throws an error when provided ' + values[ i ] ); + } + t.end(); + + function badValue( value ) { + return function badValue() { + flattenBy( zeros( [ 2, 2, 2 ] ), {}, value, {} ); + }; + } +}); + +tape( 'by default, the function flattens all dimensions of a provided input ndarray in lexicographic order (row-major, contiguous)', function test( t ) { + var expected; + var xbuf; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + y = flattenBy( x, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'by default, the function flattens all dimensions of a provided input ndarray in lexicographic order (row-major, non-contiguous)', function test( t ) { + var expected; + var xbuf; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 2, 2, 2 ]; + st = [ 8, 4, 2 ]; + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, NaN, 2.0, NaN, 3.0, NaN, 4.0, NaN, 5.0, NaN, 6.0, NaN, 7.0, NaN, 8.0, NaN ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + y = flattenBy( x, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'by default, the function flattens all dimensions of a provided input ndarray in lexicographic order (column-major, contiguous)', function test( t ) { + var expected; + var xbuf; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'column-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 5.0, 3.0, 7.0, 2.0, 6.0, 4.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + y = flattenBy( x, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'by default, the function flattens all dimensions of a provided input ndarray in lexicographic order (column-major, non-contiguous)', function test( t ) { + var expected; + var xbuf; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'column-major'; + sh = [ 2, 2, 2 ]; + st = [ 2, 4, 8 ]; + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, NaN, 5.0, NaN, 3.0, NaN, 7.0, NaN, 2.0, NaN, 6.0, NaN, 4.0, NaN, 8.0, NaN ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + y = flattenBy( x, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports specifying the maximum number of dimensions to flatten (row-major)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'depth': 0 + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ + [ 1.0, 2.0 ], + [ 3.0, 4.0 ] + ], + [ + [ 5.0, 6.0 ], + [ 7.0, 8.0 ] + ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 2, 2, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + opts = { + 'depth': 1 + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ 1.0, 2.0 ], + [ 3.0, 4.0 ], + [ 5.0, 6.0 ], + [ 7.0, 8.0 ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 4, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + opts = { + 'depth': 2 + }; + y = flattenBy( x, opts, identity ); + expected = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports specifying the maximum number of dimensions to flatten (column-major)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'column-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 5.0, 3.0, 7.0, 2.0, 6.0, 4.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'depth': 0 + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ + [ 1.0, 2.0 ], + [ 3.0, 4.0 ] + ], + [ + [ 5.0, 6.0 ], + [ 7.0, 8.0 ] + ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 2, 2, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + opts = { + 'depth': 1 + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ 1.0, 2.0 ], + [ 3.0, 4.0 ], + [ 5.0, 6.0 ], + [ 7.0, 8.0 ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 4, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + opts = { + 'depth': 2 + }; + y = flattenBy( x, opts, identity ); + expected = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a provided input ndarray in lexicographic order (row-major)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'row-major' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + opts = { + 'depth': 1, + 'order': 'row-major' + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ 1.0, 2.0 ], + [ 3.0, 4.0 ], + [ 5.0, 6.0 ], + [ 7.0, 8.0 ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 4, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a provided input ndarray in lexicographic order (column-major)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'column-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 5.0, 3.0, 7.0, 2.0, 6.0, 4.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'row-major' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + opts = { + 'depth': 1, + 'order': 'row-major' + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ 1.0, 2.0 ], + [ 3.0, 4.0 ], + [ 5.0, 6.0 ], + [ 7.0, 8.0 ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 4, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a provided input ndarray in colexicographic order (row-major)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'column-major' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 1.0, 5.0, 3.0, 7.0, 2.0, 6.0, 4.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + opts = { + 'depth': 1, + 'order': 'column-major' + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ 1.0, 2.0 ], + [ 5.0, 6.0 ], + [ 3.0, 4.0 ], + [ 7.0, 8.0 ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 4, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a provided input ndarray in colexicographic order (column-major)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'column-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 5.0, 3.0, 7.0, 2.0, 6.0, 4.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'column-major' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 1.0, 5.0, 3.0, 7.0, 2.0, 6.0, 4.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + opts = { + 'depth': 1, + 'order': 'column-major' + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ 1.0, 2.0 ], + [ 5.0, 6.0 ], + [ 3.0, 4.0 ], + [ 7.0, 8.0 ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 4, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a provided input ndarray in same order as the input ndarray (row-major)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'same' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + opts = { + 'depth': 1, + 'order': 'same' + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ 1.0, 2.0 ], + [ 3.0, 4.0 ], + [ 5.0, 6.0 ], + [ 7.0, 8.0 ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 4, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a provided input ndarray in same order as the input ndarray (column-major)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'column-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 5.0, 3.0, 7.0, 2.0, 6.0, 4.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'same' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 1.0, 5.0, 3.0, 7.0, 2.0, 6.0, 4.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + opts = { + 'depth': 1, + 'order': 'same' + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ 1.0, 2.0 ], + [ 5.0, 6.0 ], + [ 3.0, 4.0 ], + [ 7.0, 8.0 ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 4, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a provided input ndarray according to the physical layout of the input ndarray (row-major)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 2, 2, 2 ]; + st = [ -1, -2, -4 ]; // reversing and negating the strides simulates a flipped and reversed view + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 8.0, 4.0 ], + * [ 6.0, 2.0 ] + * ], + * [ + * [ 7.0, 3.0 ], + * [ 5.0, 1.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'any' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + opts = { + 'depth': 1, + 'order': 'any' + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ 8.0, 4.0 ], + [ 7.0, 3.0 ], + [ 6.0, 2.0 ], + [ 5.0, 1.0 ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 4, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a provided input ndarray according to the physical layout of the input ndarray (column-major)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'column-major'; + sh = [ 2, 2, 2 ]; + st = [ -4, -2, -1 ]; // reversing and negating the strides simulates a flipped and reversed view + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 8.0, 7.0 ], + * [ 6.0, 5.0 ] + * ], + * [ + * [ 4.0, 3.0 ], + * [ 2.0, 1.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'any' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + opts = { + 'depth': 1, + 'order': 'any' + }; + y = flattenBy( x, opts, identity ); + expected = [ + [ 8.0, 7.0 ], + [ 6.0, 5.0 ], + [ 4.0, 3.0 ], + [ 2.0, 1.0 ] + ]; + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.deepEqual( ndarray2array( y ), expected, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 4, 2 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a zero-dimensional input ndarray', function test( t ) { + var expected; + var xbuf; + var dt; + var x; + var y; + + dt = 'float64'; + x = scalar2ndarray( 3.0, { + 'dtype': dt, + 'order': 'row-major' + }); + + y = flattenBy( x, identity ); + expected = new Float64Array( [ 3.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + dt = 'float64'; + x = scalar2ndarray( 3.0, { + 'dtype': dt, + 'order': 'column-major' + }); + + y = flattenBy( x, identity ); + expected = new Float64Array( [ 3.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a zero-dimensional input ndarray (order=same)', function test( t ) { + var expected; + var xbuf; + var opts; + var dt; + var x; + var y; + + dt = 'float64'; + x = scalar2ndarray( 3.0, { + 'dtype': dt, + 'order': 'row-major' + }); + + opts = { + 'order': 'same' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 3.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + dt = 'float64'; + x = scalar2ndarray( 3.0, { + 'dtype': dt, + 'order': 'column-major' + }); + + opts = { + 'order': 'same' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 3.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a zero-dimensional input ndarray (order=any)', function test( t ) { + var expected; + var xbuf; + var opts; + var dt; + var x; + var y; + + dt = 'float64'; + x = scalar2ndarray( 3.0, { + 'dtype': dt, + 'order': 'row-major' + }); + + opts = { + 'order': 'any' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 3.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + dt = 'float64'; + x = scalar2ndarray( 3.0, { + 'dtype': dt, + 'order': 'column-major' + }); + + opts = { + 'order': 'any' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 3.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a one-dimensional input ndarray', function test( t ) { + var expected; + var xbuf; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 8 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + y = flattenBy( x, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + dt = 'float64'; + ord = 'column-major'; + sh = [ 8 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + y = flattenBy( x, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a one-dimensional input ndarray (order=same)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 8 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'same' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + dt = 'float64'; + ord = 'column-major'; + sh = [ 8 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'same' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports flattening a one-dimensional input ndarray (order=any)', function test( t ) { + var expected; + var xbuf; + var opts; + var ord; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 8 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'any' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + + dt = 'float64'; + ord = 'column-major'; + sh = [ 8 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + + opts = { + 'order': 'any' + }; + y = flattenBy( x, opts, identity ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'column-major', 'returns expected value' ); + + t.end(); +}); + +tape( 'the function supports specifying the callback execution context (row-major)', function test( t ) { + var expected; + var indices; + var values; + var arrays; + var xbuf; + var ord; + var ctx; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + ctx = { + 'count': 1 + }; + + values = []; + indices = []; + arrays = []; + y = flattenBy( x, clbk, ctx ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + t.strictEqual( ctx.count, 9, 'returns expected value' ); + + expected = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ]; + t.deepEqual( values, expected, 'returns expected value' ); + + expected = [ + [ 0, 0, 0 ], + [ 0, 0, 1 ], + [ 0, 1, 0 ], + [ 0, 1, 1 ], + [ 1, 0, 0 ], + [ 1, 0, 1 ], + [ 1, 1, 0 ], + [ 1, 1, 1 ] + ]; + indices.sort( ascending ); // index order is not guaranteed + t.deepEqual( indices, expected, 'returns expected value' ); + + expected = [ + x, + x, + x, + x, + x, + x, + x, + x + ]; + t.deepEqual( arrays, expected, 'returns expected value' ); + + t.end(); + + function clbk( v, idx, arr ) { + this.count += 1; // eslint-disable-line no-invalid-this + values.push( v ); + indices.push( idx ); + arrays.push( arr ); + return v; + } + + function ascending( a, b ) { + if ( a[ 0 ] > b[ 0 ] ) { + return 1; + } + if ( a[ 0 ] < b[ 0 ] ) { + return -1; + } + if ( a[ 1 ] > b[ 1 ] ) { + return 1; + } + if ( a[ 1 ] < b[ 1 ] ) { + return -1; + } + if ( a[ 2 ] > b[ 2 ] ) { + return 1; + } + if ( a[ 2 ] < b[ 2 ] ) { + return -1; + } + return 0; + } +}); + +tape( 'the function supports specifying the callback execution context (row-major, options)', function test( t ) { + var expected; + var indices; + var values; + var arrays; + var xbuf; + var ord; + var ctx; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'row-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + ctx = { + 'count': 1 + }; + + values = []; + indices = []; + arrays = []; + y = flattenBy( x, {}, clbk, ctx ); + expected = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + t.strictEqual( ctx.count, 9, 'returns expected value' ); + + expected = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ]; + t.deepEqual( values, expected, 'returns expected value' ); + + expected = [ + [ 0, 0, 0 ], + [ 0, 0, 1 ], + [ 0, 1, 0 ], + [ 0, 1, 1 ], + [ 1, 0, 0 ], + [ 1, 0, 1 ], + [ 1, 1, 0 ], + [ 1, 1, 1 ] + ]; + indices.sort( ascending ); // index order is not guaranteed + t.deepEqual( indices, expected, 'returns expected value' ); + + expected = [ + x, + x, + x, + x, + x, + x, + x, + x + ]; + t.deepEqual( arrays, expected, 'returns expected value' ); + + t.end(); + + function clbk( v, idx, arr ) { + this.count += 1; // eslint-disable-line no-invalid-this + values.push( v ); + indices.push( idx ); + arrays.push( arr ); + return v; + } + + function ascending( a, b ) { + if ( a[ 0 ] > b[ 0 ] ) { + return 1; + } + if ( a[ 0 ] < b[ 0 ] ) { + return -1; + } + if ( a[ 1 ] > b[ 1 ] ) { + return 1; + } + if ( a[ 1 ] < b[ 1 ] ) { + return -1; + } + if ( a[ 2 ] > b[ 2 ] ) { + return 1; + } + if ( a[ 2 ] < b[ 2 ] ) { + return -1; + } + return 0; + } +}); + +tape( 'the function supports specifying the callback execution context (column-major)', function test( t ) { + var expected; + var indices; + var values; + var arrays; + var xbuf; + var ord; + var ctx; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'column-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + ctx = { + 'count': 1 + }; + + values = []; + indices = []; + arrays = []; + y = flattenBy( x, clbk, ctx ); + expected = new Float64Array( [ 1.0, 5.0, 3.0, 7.0, 2.0, 6.0, 4.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + t.strictEqual( ctx.count, 9, 'returns expected value' ); + + expected = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ]; + t.deepEqual( values, expected, 'returns expected value' ); + + expected = [ + [ 0, 0, 0 ], + [ 0, 0, 1 ], + [ 0, 1, 0 ], + [ 0, 1, 1 ], + [ 1, 0, 0 ], + [ 1, 0, 1 ], + [ 1, 1, 0 ], + [ 1, 1, 1 ] + ]; + indices.sort( ascending ); // index order is not guaranteed + t.deepEqual( indices, expected, 'returns expected value' ); + + expected = [ + x, + x, + x, + x, + x, + x, + x, + x + ]; + t.deepEqual( arrays, expected, 'returns expected value' ); + + t.end(); + + function clbk( v, idx, arr ) { + this.count += 1; // eslint-disable-line no-invalid-this + values.push( v ); + indices.push( idx ); + arrays.push( arr ); + return v; + } + + function ascending( a, b ) { + if ( a[ 0 ] > b[ 0 ] ) { + return 1; + } + if ( a[ 0 ] < b[ 0 ] ) { + return -1; + } + if ( a[ 1 ] > b[ 1 ] ) { + return 1; + } + if ( a[ 1 ] < b[ 1 ] ) { + return -1; + } + if ( a[ 2 ] > b[ 2 ] ) { + return 1; + } + if ( a[ 2 ] < b[ 2 ] ) { + return -1; + } + return 0; + } +}); + +tape( 'the function supports specifying the callback execution context (column-major, options)', function test( t ) { + var expected; + var indices; + var values; + var arrays; + var xbuf; + var ord; + var ctx; + var sh; + var st; + var dt; + var o; + var x; + var y; + + dt = 'float64'; + ord = 'column-major'; + sh = [ 2, 2, 2 ]; + st = shape2strides( sh, ord ); + o = strides2offset( sh, st ); + + /* + * [ + * [ + * [ 1.0, 2.0 ], + * [ 3.0, 4.0 ] + * ], + * [ + * [ 5.0, 6.0 ], + * [ 7.0, 8.0 ] + * ] + * ] + */ + xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] ); + x = new ndarray( dt, xbuf, sh, st, o, ord ); + ctx = { + 'count': 1 + }; + + values = []; + indices = []; + arrays = []; + y = flattenBy( x, {}, clbk, ctx ); + expected = new Float64Array( [ 1.0, 5.0, 3.0, 7.0, 2.0, 6.0, 4.0, 8.0 ] ); + + t.notEqual( y, x, 'returns expected value' ); + t.notEqual( getData( y ), xbuf, 'returns expected value' ); + t.strictEqual( isSameFloat64Array( getData( y ), expected ), true, 'returns expected value' ); + t.deepEqual( getShape( y ), [ 8 ], 'returns expected value' ); + t.strictEqual( getDType( y ), dt, 'returns expected value' ); + t.strictEqual( getOrder( y ), 'row-major', 'returns expected value' ); + t.strictEqual( ctx.count, 9, 'returns expected value' ); + + expected = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ]; + t.deepEqual( values, expected, 'returns expected value' ); + + expected = [ + [ 0, 0, 0 ], + [ 0, 0, 1 ], + [ 0, 1, 0 ], + [ 0, 1, 1 ], + [ 1, 0, 0 ], + [ 1, 0, 1 ], + [ 1, 1, 0 ], + [ 1, 1, 1 ] + ]; + indices.sort( ascending ); // index order is not guaranteed + t.deepEqual( indices, expected, 'returns expected value' ); + + expected = [ + x, + x, + x, + x, + x, + x, + x, + x + ]; + t.deepEqual( arrays, expected, 'returns expected value' ); + + t.end(); + + function clbk( v, idx, arr ) { + this.count += 1; // eslint-disable-line no-invalid-this + values.push( v ); + indices.push( idx ); + arrays.push( arr ); + return v; + } + + function ascending( a, b ) { + if ( a[ 0 ] > b[ 0 ] ) { + return 1; + } + if ( a[ 0 ] < b[ 0 ] ) { + return -1; + } + if ( a[ 1 ] > b[ 1 ] ) { + return 1; + } + if ( a[ 1 ] < b[ 1 ] ) { + return -1; + } + if ( a[ 2 ] > b[ 2 ] ) { + return 1; + } + if ( a[ 2 ] < b[ 2 ] ) { + return -1; + } + return 0; + } +});