You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Applies a real elementary reflector `H = I - tau * v * v ^ T` to a real M by N matrix `C`.
357
+
* Applies a real elementary reflector `H = I - tau * v * v^T` to a real M by N matrix `C`.
358
358
*
359
359
* ## Notes
360
360
*
361
-
* - `work` should have `N` indexed elements if side = `left` and `M` indexed elements if side = `right`.
362
-
* - `V` should have `1 + (M-1) * abs(strideV)` indexed elements if side = `left` and `1 + (N-1) * abs(strideV)` indexed elements if side = `right`.
363
-
* - `C` is overwritten by `H * C` if side = `left` and `C * H` if side = `right`.
361
+
* - `work` should have `N` indexed elements if side = `'left'` and `M` indexed elements if side = `'right'`.
362
+
* - `V` should have `1 + (M-1) * abs(strideV)` indexed elements if side = `'left'` and `1 + (N-1) * abs(strideV)` indexed elements if side = `'right'`.
363
+
* - `C` is overwritten by `H * C` if side = `'left'` and `C * H` if side = `'right'`.
364
364
*
365
365
* @private
366
-
* @param {string} side - specifies the side of multiplication with `C`. Use `left` to form `H * C` and `right` to from `C * H`.
366
+
* @param {string} side - specifies the side of multiplication with `C`. Use `'left'` to form `H * C` and `'right'` to form `C * H`.
367
367
* @param {NonNegativeInteger} M - number of rows in `C`
368
368
* @param {NonNegativeInteger} N - number of columns in `C`
369
-
* @param {Float64Array} V - the vector `v` in the representation of `H`
369
+
* @param {Float64Array} V - the vector `v`
370
370
* @param {integer} strideV - stride length for `V`
371
371
* @param {NonNegativeInteger} offsetV - starting index for `V`
372
-
* @param {number} tau - the value of `tau` in representation of `H`
372
+
* @param {number} tau - scalar constant
373
373
* @param {Float64Array} C - input matrix
374
374
* @param {integer} strideC1 - stride of the first dimension of `C`
375
375
* @param {integer} strideC2 - stride of the second dimension of `C`
* Applies a real elementary reflector `H = I - tau * v * v ^ T` to a real M by N matrix `C`.
251
+
* Applies a real elementary reflector `H = I - tau * v * v^T` to a real M by N matrix `C`.
252
252
*
253
253
* ## Notes
254
254
*
255
-
* - `work` should have `N` indexed elements if side = `left` and `M` indexed elements if side = `right`.
256
-
* - `V` should have `1 + (M-1) * abs(strideV)` indexed elements if side = `left` and `1 + (N-1) * abs(strideV)` indexed elements if side = `right`.
257
-
* - `C` is overwritten by `H * C` if side = `left` and `C * H` if side = `right`.
255
+
* - `work` should have `N` indexed elements if side = `'left'` and `M` indexed elements if side = `'right'`.
256
+
* - `V` should have `1 + (M-1) * abs(strideV)` indexed elements if side = `'left'` and `1 + (N-1) * abs(strideV)` indexed elements if side = `'right'`.
257
+
* - `C` is overwritten by `H * C` if side = `'left'` and `C * H` if side = `'right'`.
258
258
*
259
-
* @param {string} side - specifies the side of multiplication with `C`. Use `left` to form `H * C` and `right` to from `C * H`.
259
+
* @param {string} side - specifies the side of multiplication with `C`. Use `'left'` to form `H * C` and `'right'` to form `C * H`.
260
260
* @param {NonNegativeInteger} M - number of rows in `C`
261
261
* @param {NonNegativeInteger} N - number of columns in `C`
262
-
* @param {Float64Array} V - the vector `v` in the representation of `H`
262
+
* @param {Float64Array} V - the vector `v`
263
263
* @param {integer} strideV - stride length for `V`
264
264
* @param {NonNegativeInteger} offsetV - starting index for `V`
265
-
* @param {number} tau - the value of `tau` in representation of `H`
265
+
* @param {number} tau - scalar constant
266
266
* @param {Float64Array} C - input matrix
267
267
* @param {integer} strideC1 - stride of the first dimension of `C`
268
268
* @param {integer} strideC2 - stride of the second dimension of `C`
0 commit comments