You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Performs the hermitian rank 1 operation `A = alpha*x*x**H + A`, where `alpha` is a real scalar, `x` is an `N` element vector and `A` is an `N` by `N` hermitian matrix.
369
+
* Performs the hermitian rank 1 operation `A = alpha*x*x^H + A`, where `alpha` is a real scalar, `x` is an `N` element vector and `A` is an `N` by `N` hermitian matrix.
370
370
*
371
371
* @private
372
372
* @param {string} uplo - specifies whether `A` is an upper or lower triangular part of matrix is supplied.
373
373
* @param {NonNegativeInteger} N - number of elements along each dimension of `A`
374
374
* @param {number} alpha - scalar
375
375
* @param {Complex128Array} x - input array
376
-
* @param {integer} strideX - `x` stride length
376
+
* @param {integer} strideX - stride length for `x`
377
377
* @param {NonNegativeInteger} offsetX - starting `x` index
378
378
* @param {Complex128Array} A - input matrix
379
379
* @param {integer} strideA1 - stride of the first dimension of `A`
* BLAS level 2 routine to perform the hermitian rank 1 operation `A = alpha*x*x**H + A`, where `alpha` is a real scalar, `x` is an `N` element vector and `A` is an `N` by `N` hermitian matrix.
230
+
* BLAS level 2 routine to perform the hermitian rank 1 operation `A = alpha*x*xH + A`, where `alpha` is a real scalar, `x` is an `N` element vector and `A` is an `N` by `N` hermitian matrix.
* Performs the hermitian rank 1 operation `A = alpha*x*x**H + A`, where `alpha` is a real scalar, `x` is an `N` element vector and `A` is an `N` by `N` hermitian matrix.
264
+
* Performs the hermitian rank 1 operation `A = alpha*x*x^H + A`, where `alpha` is a real scalar, `x` is an `N` element vector and `A` is an `N` by `N` hermitian matrix.
267
265
*
268
266
* @param {string} uplo - specifies whether `A` is an upper or lower triangular part of matrix is supplied.
269
267
* @param {NonNegativeInteger} N - number of elements along each dimension of `A`
270
268
* @param {number} alpha - scalar
271
269
* @param {Complex128Array} x - input array
272
-
* @param {integer} strideX - `x` stride length
270
+
* @param {integer} strideX - stride length for `x`
273
271
* @param {NonNegativeInteger} offsetX - starting `x` index
274
272
* @param {Complex128Array} A - input matrix
275
273
* @param {integer} strideA1 - stride of the first dimension of `A`
* Performs the hermitian rank 1 operation `A = alpha*x*x**H + A`, where `alpha` is a real scalar, `x` is an `N` element vector and `A` is an `N` by `N` hermitian matrix.
296
+
* Performs the hermitian rank 1 operation `A = alpha*x*x^H + A`, where `alpha` is a real scalar, `x` is an `N` element vector and `A` is an `N` by `N` hermitian matrix.
297
297
*
298
298
* @param {string} order - storage layout
299
299
* @param {string} uplo - specifies whether `A` is an upper or lower triangular part of matrix is supplied.
300
300
* @param {NonNegativeInteger} N - number of elements along each dimension of `A`
301
301
* @param {number} alpha - scalar constant
302
302
* @param {Complex128Array} x - input array
303
-
* @param {integer} strideX - `x` stride length
303
+
* @param {integer} strideX - stride length for `x`
304
304
* @param {Complex128Array} A - input matrix
305
305
* @param {PositiveInteger} LDA - stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`)
306
306
* @throws {TypeError} first argument must be a valid order
0 commit comments