You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Performs the symmetric rank 1 operation `A = α*x*x^T + A` where `α` is a scalar, `x` is an `N` element vector, and `A` is an `N` by `N` symmetric matrix.
277
277
*
278
278
* @param {string} order - storage layout
279
-
* @param {string} uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` is supplied
279
+
* @param {string} uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` should be referenced
280
280
* @param {NonNegativeInteger} N - number of elements along each dimension of `A`
* Performs the symmetric rank 1 operation `A = α*x*x^T + A` where `α` is a scalar, `x` is an `N` element vector, and `A` is an `N` by `N` symmetric matrix.
256
256
*
257
-
* @param {string} uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` is supplied
257
+
* @param {string} uplo - specifies whether the upper or lower triangular part of the symmetric matrix `A` should be referenced
258
258
* @param {NonNegativeInteger} N - number of elements along each dimension of `A`
259
-
* @param {number} alpha - scalar constant
259
+
* @param {number} alpha - scalar
260
260
* @param {Float64Array} x - input vector
261
261
* @param {integer} strideX - `x` stride length
262
262
* @param {NonNegativeInteger} offsetX - starting index for `x`
0 commit comments