You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Licensed under the Apache License, Version 2.0 (the "License");
256
+
* you may not use this file except in compliance with the License.
257
+
* You may obtain a copy of the License at
258
+
*
259
+
* http://www.apache.org/licenses/LICENSE-2.0
260
+
*
261
+
* Unless required by applicable law or agreed to in writing, software
262
+
* distributed under the License is distributed on an "AS IS" BASIS,
263
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
264
+
* See the License for the specific language governing permissions and
265
+
* limitations under the License.
266
+
*/
267
+
268
+
'use strict';
269
+
270
+
// MAIN //
271
+
272
+
/**
273
+
* Computes the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.
274
+
*
275
+
* ## Method
276
+
*
277
+
* - This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983).
278
+
*
279
+
* ## References
280
+
*
281
+
* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
282
+
* - Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).
283
+
* - Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115).
284
+
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
285
+
*
286
+
* @param {PositiveInteger} N - number of indexed elements
287
+
* @param {number} correction - degrees of freedom adjustment
288
+
* @param {Float64Array} x - input array
289
+
* @param {integer} stride - stride length
290
+
* @returns {number} variance
291
+
*
292
+
* @example
293
+
* var Float64Array = require( '@stdlib/array/float64' );
294
+
*
295
+
* var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
296
+
* var N = x.length;
297
+
*
298
+
* var v = dvariancech( N, 1, x, 1 );
299
+
* // returns ~4.3333
300
+
*/
301
+
function dvariancech( N, correction, x, stride ) {
302
+
var mu;
303
+
var ix;
304
+
var M2;
305
+
var M;
306
+
var d;
307
+
var n;
308
+
var i;
309
+
310
+
n = N - correction;
311
+
if ( N <= 0 || n <= 0.0 ) {
312
+
return NaN;
313
+
}
314
+
if ( N === 1 || stride === 0 ) {
315
+
return 0.0;
316
+
}
317
+
if ( stride < 0 ) {
318
+
ix = (1-N) * stride;
319
+
} else {
320
+
ix = 0;
321
+
}
322
+
// Use an estimate for the mean:
323
+
mu = x[ ix ];
324
+
ix += stride;
325
+
326
+
// Compute the variance...
327
+
M2 = 0.0;
328
+
M = 0.0;
329
+
for ( i = 1; i < N; i++ ) {
330
+
d = x[ ix ] - mu;
331
+
M2 += d * d;
332
+
M += d;
333
+
ix += stride;
334
+
}
335
+
return (M2/n) - ((M/N)*(M/n));
336
+
}
337
+
338
+
339
+
// EXPORTS //
340
+
341
+
module.exports = dvariancech;
342
+
</pre></td></tr></table></pre>
343
+
344
+
<divclass='push'></div><!-- for sticky footer -->
345
+
</div><!-- /wrapper -->
346
+
<divclass='footer quiet pad2 space-top1 center small'>
0 commit comments