You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Performs one of the matrix-matrix operations `B = α * op(A) * B` or `B = α * B * op(A)` where α is a scalar, `B` is an `M` by `N` matrix, A is a unit, or non-unit, upper or lower triangular matrix and `op( A )` is one of `op( A ) = A` or `op( A ) = A**T`.
872
+
* Performs one of the matrix-matrix operations `B = α * op(A) * B` or `B = α * B * op(A)` where `α` is a scalar, `B` is an `M` by `N` matrix, `A` is a unit, or non-unit, upper or lower triangular matrix and `op( A )` is one of `op( A ) = A` or `op( A ) = A**T`.
873
873
*
874
874
* @private
875
-
* @param {string} side - specifies whether `op( A )` multiplies `B` from the left or right
875
+
* @param {string} side - specifies whether `op( A )` appears on the left or right side of `B`
876
876
* @param {string} uplo - specifies whether the upper or lower triangular part of the matrix `A` is supplied
877
877
* @param {string} transa - specifies the form of `op( A )` to be used in matrix multiplication
878
878
* @param {string} diag - specifies whether or not `A` is unit triangular
879
879
* @param {NonNegativeInteger} M - number of rows in `B`
880
880
* @param {NonNegativeInteger} N - number of columns in `B`
881
881
* @param {number} alpha - scalar constant
882
-
* @param {Float64Array} A - input matrix `A`
882
+
* @param {Float64Array} A - first input matrix
883
883
* @param {integer} strideA1 - stride of the first dimension of `A`
884
884
* @param {integer} strideA2 - stride of the second dimension of `A`
885
885
* @param {NonNegativeInteger} offsetA - starting index for `A`
886
-
* @param {Float64Array} B - input matrix `B`
886
+
* @param {Float64Array} B - second input matrix
887
887
* @param {integer} strideB1 - stride of the first dimension of `B`
888
888
* @param {integer} strideB2 - stride of the second dimension of `B`
889
889
* @param {NonNegativeInteger} offsetB - starting index for `B`
var max = require( '@stdlib/math/base/special/fast/max' );
344
+
var isColumnMajor = require( '@stdlib/ndarray/base/assert/is-column-major-string' );
345
345
var isLayout = require( '@stdlib/blas/base/assert/is-layout' );
346
-
var isMatrixTriangle = require( '@stdlib/blas/base/assert/is-matrix-triangle' );
347
346
var isOperationSide = require( '@stdlib/blas/base/assert/is-operation-side' );
347
+
var isMatrixTriangle = require( '@stdlib/blas/base/assert/is-matrix-triangle' );
348
348
var isTransposeOperation = require( '@stdlib/blas/base/assert/is-transpose-operation' );
349
349
var isDiagonalType = require( '@stdlib/blas/base/assert/is-diagonal-type' );
350
-
var isColumnMajor = require( '@stdlib/ndarray/base/assert/is-column-major-string' );
350
+
var max = require( '@stdlib/math/base/special/fast/max' );
351
351
var format = require( '@stdlib/string/format' );
352
352
var base = require( './base.js' );
353
353
354
354
355
355
// MAIN //
356
356
357
357
/**
358
-
* Performs one of the matrix-matrix operations `B = α * op(A) * B` or `B = α * B * op(A)` where α is a scalar, `B` is an `M` by `N` matrix, A is a unit, or non-unit, upper or lower triangular matrix and `op( A )` is one of `op( A ) = A` or `op( A ) = A**T`.
358
+
* Performs one of the matrix-matrix operations `B = α * op(A) * B` or `B = α * B * op(A)` where `α` is a scalar, `B` is an `M` by `N` matrix, `A` is a unit, or non-unit, upper or lower triangular matrix and `op( A )` is one of `op( A ) = A` or `op( A ) = A**T`.
359
359
*
360
360
* @param {string} order - storage layout of `A` and `B`
361
-
* @param {string} side - specifies whether `op( A )` multiplies `B` from the left or right
361
+
* @param {string} side - specifies whether `op( A )` appears on the left or right side of `B`
362
362
* @param {string} uplo - specifies whether the upper or lower triangular part of the matrix `A` is supplied
363
363
* @param {string} transa - specifies the form of `op( A )` to be used in matrix multiplication
364
364
* @param {string} diag - specifies whether or not `A` is unit triangular
365
365
* @param {NonNegativeInteger} M - number of rows in `B`
366
366
* @param {NonNegativeInteger} N - number of columns in `B`
367
367
* @param {number} alpha - scalar constant
368
-
* @param {Float64Array} A - input matrix `A`
368
+
* @param {Float64Array} A - first input matrix
369
369
* @param {NonNegativeInteger} LDA - stride of the first dimension of `A` (a.k.a., leading dimension of the matrix `A`)
370
-
* @param {Float64Array} B - input matrix `B`
370
+
* @param {Float64Array} B - second input matrix
371
371
* @param {NonNegativeInteger} LDB - stride of the first dimension of `B` (a.k.a., leading dimension of the matrix `B`)
372
372
* @throws {TypeError} first argument must be a valid order
373
373
* @throws {TypeError} second argument must be a valid side
* BLAS routine to perform one of the matrix-matrix operations `B = α * op(A) * B` or `B = α * B * op(A)` where α is a scalar, `B` is an `M` by `N` matrix, A is a unit, or non-unit, upper or lower triangular matrix and `op( A )` is one of `op( A ) = A` or `op( A ) = A**T`.
223
+
* BLAS routine to perform one of the matrix-matrix operations `B = α * op(A) * B` or `B = α * B * op(A)` where `α` is a scalar, `B` is an `M` by `N` matrix, `A` is a unit, or non-unit, upper or lower triangular matrix and `op( A )` is one of `op( A ) = A` or `op( A ) = A**T`.
var isMatrixTriangle = require( '@stdlib/blas/base/assert/is-matrix-triangle' );
290
+
var format = require( '@stdlib/string/format' );
291
291
var isOperationSide = require( '@stdlib/blas/base/assert/is-operation-side' );
292
+
var isMatrixTriangle = require( '@stdlib/blas/base/assert/is-matrix-triangle' );
292
293
var isTransposeOperation = require( '@stdlib/blas/base/assert/is-transpose-operation' );
293
294
var isDiagonalType = require( '@stdlib/blas/base/assert/is-diagonal-type' );
294
-
var format = require( '@stdlib/string/format' );
295
295
var base = require( './base.js' );
296
296
297
297
298
298
// MAIN //
299
299
300
300
/**
301
-
* Performs one of the matrix-matrix operations `B = α * op(A) * B` or `B = α * B * op(A)` where α is a scalar, `B` is an `M` by `N` matrix, A is a unit, or non-unit, upper or lower triangular matrix and `op( A )` is one of `op( A ) = A` or `op( A ) = A**T`.
301
+
* Performs one of the matrix-matrix operations `B = α * op(A) * B` or `B = α * B * op(A)` where `α` is a scalar, `B` is an `M` by `N` matrix, `A` is a unit, or non-unit, upper or lower triangular matrix and `op( A )` is one of `op( A ) = A` or `op( A ) = A**T`.
302
302
*
303
-
* @param {string} side - specifies whether `op( A )` multiplies `B` from the left or right
303
+
* @param {string} side - specifies whether `op( A )` appears on the left or right side of `B`
304
304
* @param {string} uplo - specifies whether the upper or lower triangular part of the matrix `A` is supplied
305
305
* @param {string} transa - specifies the form of `op( A )` to be used in matrix multiplication
306
306
* @param {string} diag - specifies whether or not `A` is unit triangular
307
307
* @param {NonNegativeInteger} M - number of rows in `B`
308
308
* @param {NonNegativeInteger} N - number of columns in `B`
309
309
* @param {number} alpha - scalar constant
310
-
* @param {Float64Array} A - input matrix `A`
310
+
* @param {Float64Array} A - first input matrix
311
311
* @param {integer} strideA1 - stride of the first dimension of `A`
312
312
* @param {integer} strideA2 - stride of the second dimension of `A`
313
313
* @param {NonNegativeInteger} offsetA - starting index for `A`
314
-
* @param {Float64Array} B - input matrix `B`
314
+
* @param {Float64Array} B - second input matrix
315
315
* @param {integer} strideB1 - stride of the first dimension of `B`
316
316
* @param {integer} strideB2 - stride of the second dimension of `B`
317
317
* @param {NonNegativeInteger} offsetB - starting index for `B`
0 commit comments