@@ -498,7 +498,7 @@ merge_results = function(res_discovery, res_test, formula, gene_column, value_co
498498# ' @param gene_column A column name
499499# ' @param how_many_negative_controls An integer
500500# '
501- select_to_check_and_house_keeping = function (input.df , do_check_column , significance_column , gene_column , how_many_negative_controls ){
501+ select_to_check_and_house_keeping = function (input.df , do_check_column , significance_column , gene_column , how_many_negative_controls = 500 ){
502502 input.df %> %
503503 {
504504 bind_rows(
@@ -722,7 +722,7 @@ check_if_any_NA = function(input.df, sample_column, gene_column, value_column, s
722722# ' @importFrom magrittr multiply_by
723723# ' @importFrom purrr map2
724724# ' @importFrom purrr map_int
725- # ' @importFrom ttBulk add_normalised_counts_bulk
725+ # ' @importFrom ttBulk normalise_abundance
726726# '
727727# ' @param my_df A tibble including a gene name column | sample name column | read counts column | covariates column
728728# ' @param formula A formula
@@ -951,7 +951,10 @@ do_inference = function(my_df,
951951 add_exposure_rate(fit ) %> %
952952
953953 # needed for the figure article
954- ifelse_pipe(pass_fit , ~ .x %> % add_attr(fit , " fit" ) )
954+ ifelse_pipe(pass_fit , ~ .x %> % add_attr(fit , " fit" ) ) %> %
955+
956+ # Passing the amout of sampled data
957+ add_attr(S * how_many_to_check * how_many_posterior_draws , " total_draws" )
955958}
956959
957960detect_cores = function (){
@@ -997,7 +1000,7 @@ create_design_matrix = function(input.df, formula, sample_column){
9971000# ' @param how_many_negative_controls An integer
9981001# '
9991002# ' @export
1000- format_input = function (input.df , formula , sample_column , gene_column , value_column , do_check_column , significance_column , how_many_negative_controls ){
1003+ format_input = function (input.df , formula , sample_column , gene_column , value_column , do_check_column , significance_column , how_many_negative_controls = 500 ){
10011004
10021005 # Prepare column same enquo
10031006 sample_column = enquo(sample_column )
@@ -1047,7 +1050,7 @@ format_input = function(input.df, formula, sample_column, gene_column, value_col
10471050# ' @importFrom magrittr multiply_by
10481051# ' @importFrom purrr map2
10491052# ' @importFrom purrr map_int
1050- # ' @importFrom ttBulk add_normalised_counts_bulk
1053+ # ' @importFrom ttBulk normalise_abundance
10511054# '
10521055# ' @param input.df A tibble including a gene name column | sample name column | read counts column | covariates column
10531056# ' @param formula A formula
@@ -1157,7 +1160,7 @@ ppc_seq = function(input.df,
11571160 # Build better scales for the inference
11581161 exposure_rate_multiplier =
11591162 my_df %> %
1160- add_normalised_counts_bulk (!! sample_column ,!! gene_column ,!! value_column ) %> %
1163+ normalise_abundance (!! sample_column ,!! gene_column ,!! value_column ) %> %
11611164 distinct(!! sample_column , TMM , multiplier ) %> %
11621165 mutate(l = multiplier %> % log ) %> %
11631166 summarise(l %> % sd ) %> %
@@ -1166,7 +1169,7 @@ ppc_seq = function(input.df,
11661169 # Build better scales for the inference
11671170 intercept_shift_scale =
11681171 my_df %> %
1169- add_normalised_counts_bulk (!! sample_column ,!! gene_column ,!! value_column ) %> %
1172+ normalise_abundance (!! sample_column ,!! gene_column ,!! value_column ) %> %
11701173 mutate(cc =
11711174 !! as.symbol(sprintf(
11721175 " %s normalised" , quo_name(value_column )
@@ -1254,6 +1257,11 @@ ppc_seq = function(input.df,
12541257 merge_results(res_discovery , res_test , formula , gene_column , value_column , sample_column , do_check_only_on_detrimental ) %> %
12551258
12561259 # Add fit attribute if any
1257- add_attr(res_discovery %> % attr(" fit" ), " fit" )
1260+ add_attr(res_discovery %> % attr(" fit" ), " fit" ) %> %
1261+
1262+ # Add total draws
1263+ add_attr(res_discovery %> % attr(" total_draws" ), " total_draws" )
1264+
1265+
12581266
12591267}
0 commit comments