@@ -7389,11 +7389,6 @@ def set_gguf_parameters(self):
7389
7389
class HunYuanMoEModel (TextModel ):
7390
7390
model_arch = gguf .MODEL_ARCH .HUNYUAN_MOE
7391
7391
7392
- def __init__ (self , * args , ** kwargs ):
7393
- super ().__init__ (* args , ** kwargs )
7394
- # For handling tied embeddings
7395
- self ._tok_embd = None
7396
-
7397
7392
def set_vocab (self ):
7398
7393
from transformers import AutoTokenizer
7399
7394
tokenizer = AutoTokenizer .from_pretrained (self .dir_model , trust_remote_code = True )
@@ -7487,9 +7482,6 @@ def set_gguf_parameters(self):
7487
7482
_experts : list [dict [str , Tensor ]] | None = None
7488
7483
7489
7484
def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
7490
- if name == "model.embed_tokens.weight" :
7491
- self ._tok_embd = data_torch .clone ()
7492
-
7493
7485
if name == "lm_head.weight" :
7494
7486
if self .hparams .get ("tie_word_embeddings" , False ):
7495
7487
logger .info ("Skipping tied output layer 'lm_head.weight'" )
@@ -7538,11 +7530,6 @@ def prepare_tensors(self):
7538
7530
class HunYuanModel (TextModel ):
7539
7531
model_arch = gguf .MODEL_ARCH .HUNYUAN_DENSE
7540
7532
7541
- def __init__ (self , * args , ** kwargs ):
7542
- super ().__init__ (* args , ** kwargs )
7543
- # For handling tied embeddings
7544
- self ._tok_embd = None
7545
-
7546
7533
def set_vocab (self ):
7547
7534
if (self .dir_model / "tokenizer.json" ).is_file ():
7548
7535
self ._set_vocab_gpt2 ()
@@ -7602,8 +7589,6 @@ def set_gguf_parameters(self):
7602
7589
super ().set_gguf_parameters ()
7603
7590
hparams = self .hparams
7604
7591
7605
- self .gguf_writer .add_expert_shared_feed_forward_length (hparams ["intermediate_size" ])
7606
-
7607
7592
# Rope
7608
7593
rope_scaling = hparams .get ("rope_scaling" , {})
7609
7594
if rope_scaling .get ("type" ) == "dynamic" :
@@ -7624,12 +7609,7 @@ def set_gguf_parameters(self):
7624
7609
assert base == 10000.0 and self .hparams ["max_position_embeddings" ] in [32 * 1024 , 256 * 1024 ] , \
7625
7610
"HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
7626
7611
7627
- _experts : list [dict [str , Tensor ]] | None = None
7628
-
7629
7612
def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
7630
- if name == "model.embed_tokens.weight" :
7631
- self ._tok_embd = data_torch .clone ()
7632
-
7633
7613
if name == "lm_head.weight" :
7634
7614
if self .hparams .get ("tie_word_embeddings" , False ):
7635
7615
logger .info ("Skipping tied output layer 'lm_head.weight'" )
0 commit comments