Skip to content

Commit 3ecc5d3

Browse files
remove leftover code
Signed-off-by: stevenkuang <[email protected]>
1 parent 0192c12 commit 3ecc5d3

File tree

2 files changed

+1
-21
lines changed

2 files changed

+1
-21
lines changed

convert_hf_to_gguf.py

Lines changed: 0 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -7389,11 +7389,6 @@ def set_gguf_parameters(self):
73897389
class HunYuanMoEModel(TextModel):
73907390
model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
73917391

7392-
def __init__(self, *args, **kwargs):
7393-
super().__init__(*args, **kwargs)
7394-
# For handling tied embeddings
7395-
self._tok_embd = None
7396-
73977392
def set_vocab(self):
73987393
from transformers import AutoTokenizer
73997394
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
@@ -7487,9 +7482,6 @@ def set_gguf_parameters(self):
74877482
_experts: list[dict[str, Tensor]] | None = None
74887483

74897484
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
7490-
if name == "model.embed_tokens.weight":
7491-
self._tok_embd = data_torch.clone()
7492-
74937485
if name == "lm_head.weight":
74947486
if self.hparams.get("tie_word_embeddings", False):
74957487
logger.info("Skipping tied output layer 'lm_head.weight'")
@@ -7538,11 +7530,6 @@ def prepare_tensors(self):
75387530
class HunYuanModel(TextModel):
75397531
model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
75407532

7541-
def __init__(self, *args, **kwargs):
7542-
super().__init__(*args, **kwargs)
7543-
# For handling tied embeddings
7544-
self._tok_embd = None
7545-
75467533
def set_vocab(self):
75477534
if (self.dir_model / "tokenizer.json").is_file():
75487535
self._set_vocab_gpt2()
@@ -7602,8 +7589,6 @@ def set_gguf_parameters(self):
76027589
super().set_gguf_parameters()
76037590
hparams = self.hparams
76047591

7605-
self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
7606-
76077592
# Rope
76087593
rope_scaling = hparams.get("rope_scaling", {})
76097594
if rope_scaling.get("type") == "dynamic":
@@ -7624,12 +7609,7 @@ def set_gguf_parameters(self):
76247609
assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
76257610
"HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
76267611

7627-
_experts: list[dict[str, Tensor]] | None = None
7628-
76297612
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
7630-
if name == "model.embed_tokens.weight":
7631-
self._tok_embd = data_torch.clone()
7632-
76337613
if name == "lm_head.weight":
76347614
if self.hparams.get("tie_word_embeddings", False):
76357615
logger.info("Skipping tied output layer 'lm_head.weight'")

src/llama-model.cpp

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1746,7 +1746,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
17461746
} break;
17471747
case LLM_ARCH_HUNYUAN_DENSE:
17481748
{
1749-
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1749+
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
17501750

17511751
switch (hparams.n_embd) {
17521752
case 1024: type = LLM_TYPE_0_5B; break;

0 commit comments

Comments
 (0)