|
46 | 46 | require_peft_backend, |
47 | 47 | require_torch_accelerator, |
48 | 48 | require_torch_accelerator_with_fp16, |
49 | | - require_torch_gpu, |
50 | 49 | skip_mps, |
51 | 50 | slow, |
52 | 51 | torch_all_close, |
@@ -1084,42 +1083,6 @@ def test_load_sharded_checkpoint_device_map_from_hub_local_subfolder(self): |
1084 | 1083 | assert loaded_model |
1085 | 1084 | assert new_output.sample.shape == (4, 4, 16, 16) |
1086 | 1085 |
|
1087 | | - @parameterized.expand( |
1088 | | - [ |
1089 | | - (-1, "You can't pass device_map as a negative int"), |
1090 | | - ("foo", "When passing device_map as a string, the value needs to be a device name"), |
1091 | | - ] |
1092 | | - ) |
1093 | | - def test_wrong_device_map_raises_error(self, device_map, msg_substring): |
1094 | | - with self.assertRaises(ValueError) as err_ctx: |
1095 | | - _ = self.model_class.from_pretrained( |
1096 | | - "hf-internal-testing/unet2d-sharded-dummy-subfolder", subfolder="unet", device_map=device_map |
1097 | | - ) |
1098 | | - |
1099 | | - assert msg_substring in str(err_ctx.exception) |
1100 | | - |
1101 | | - @parameterized.expand([0, "cuda", torch.device("cuda"), torch.device("cuda:0")]) |
1102 | | - @require_torch_gpu |
1103 | | - def test_passing_non_dict_device_map_works(self, device_map): |
1104 | | - _, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
1105 | | - loaded_model = self.model_class.from_pretrained( |
1106 | | - "hf-internal-testing/unet2d-sharded-dummy-subfolder", subfolder="unet", device_map=device_map |
1107 | | - ) |
1108 | | - output = loaded_model(**inputs_dict) |
1109 | | - assert output.sample.shape == (4, 4, 16, 16) |
1110 | | - |
1111 | | - @parameterized.expand([("", "cuda"), ("", torch.device("cuda"))]) |
1112 | | - @require_torch_gpu |
1113 | | - def test_passing_dict_device_map_works(self, name, device_map): |
1114 | | - # There are other valid dict-based `device_map` values too. It's best to refer to |
1115 | | - # the docs for those: https://huggingface.co/docs/accelerate/en/concept_guides/big_model_inference#the-devicemap. |
1116 | | - _, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
1117 | | - loaded_model = self.model_class.from_pretrained( |
1118 | | - "hf-internal-testing/unet2d-sharded-dummy-subfolder", subfolder="unet", device_map={name: device_map} |
1119 | | - ) |
1120 | | - output = loaded_model(**inputs_dict) |
1121 | | - assert output.sample.shape == (4, 4, 16, 16) |
1122 | | - |
1123 | 1086 | @require_peft_backend |
1124 | 1087 | def test_load_attn_procs_raise_warning(self): |
1125 | 1088 | init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
0 commit comments