|
| 1 | +#![allow(unsafe_code)] |
| 2 | +#![allow(warnings)] |
| 3 | +#![allow(missing_docs)] |
| 4 | +#![allow(unused_variables)] |
| 5 | +#![no_main] |
| 6 | +#![no_std] |
| 7 | + |
| 8 | +mod utils; |
| 9 | + |
| 10 | +#[rtic::app(device = stm32g4xx_hal::stm32g4::stm32g474, peripherals = true)] |
| 11 | +mod app { |
| 12 | + use crate::utils::logger; |
| 13 | + use stm32g4xx_hal::flash::{FlashExt, FlashSize, FlashWriter, Parts}; |
| 14 | + use stm32g4xx_hal::prelude::*; |
| 15 | + use stm32g4xx_hal::rcc::{PllConfig, RccExt}; |
| 16 | + |
| 17 | + const LOG_LEVEL: log::LevelFilter = log::LevelFilter::Info; |
| 18 | + |
| 19 | + use panic_halt as _; // you can put a breakpoint on `rust_begin_unwind` to catch panics |
| 20 | + |
| 21 | + // Resources shared between tasks |
| 22 | + #[shared] |
| 23 | + struct Shared {} |
| 24 | + |
| 25 | + // Local resources to specific tasks (cannot be shared) |
| 26 | + #[local] |
| 27 | + struct Local {} |
| 28 | + |
| 29 | + fn compare_arrays(a: &[u8], b: &[u8]) -> bool { |
| 30 | + if a.len() != b.len() { |
| 31 | + return false; |
| 32 | + } |
| 33 | + for i in 0..a.len() { |
| 34 | + if a[i] != b[i] { |
| 35 | + return false; |
| 36 | + } |
| 37 | + } |
| 38 | + true |
| 39 | + } |
| 40 | + |
| 41 | + #[init] |
| 42 | + fn init(cx: init::Context) -> (Shared, Local, init::Monotonics) { |
| 43 | + let dp = cx.device; |
| 44 | + let cp = cx.core; |
| 45 | + |
| 46 | + let rcc = dp.RCC.constrain(); |
| 47 | + let mut pll_config = stm32g4xx_hal::rcc::PllConfig::default(); |
| 48 | + |
| 49 | + // Sysclock is based on PLL_R |
| 50 | + pll_config.mux = stm32g4xx_hal::rcc::PLLSrc::HSI; // 16MHz |
| 51 | + pll_config.n = stm32g4xx_hal::rcc::PllNMul::MUL_32; |
| 52 | + pll_config.m = stm32g4xx_hal::rcc::PllMDiv::DIV_2; // f(vco) = 16MHz*32/2 = 256MHz |
| 53 | + pll_config.r = Some(stm32g4xx_hal::rcc::PllRDiv::DIV_2); // f(sysclock) = 256MHz/2 = 128MHz |
| 54 | + |
| 55 | + // Note to future self: The AHB clock runs the timers, among other things. |
| 56 | + // Please refer to the Clock Tree manual to determine if it is worth |
| 57 | + // changing to a lower speed for battery life savings. |
| 58 | + let mut clock_config = stm32g4xx_hal::rcc::Config::default() |
| 59 | + .pll_cfg(pll_config) |
| 60 | + .clock_src(stm32g4xx_hal::rcc::SysClockSrc::PLL); |
| 61 | + |
| 62 | + // After clock configuration, the following should be true: |
| 63 | + // Sysclock is 128MHz |
| 64 | + // AHB clock is 128MHz |
| 65 | + // APB1 clock is 128MHz |
| 66 | + // APB2 clock is 128MHz |
| 67 | + // The ADC will ultimately be put into synchronous mode and will derive |
| 68 | + // its clock from the AHB bus clock, with a prescalar of 2 or 4. |
| 69 | + |
| 70 | + let mut rcc = rcc.freeze(clock_config); |
| 71 | + |
| 72 | + unsafe { |
| 73 | + let mut flash = &(*stm32g4xx_hal::stm32::FLASH::ptr()); |
| 74 | + flash.acr.modify(|_, w| { |
| 75 | + w.latency().bits(0b1000) // 8 wait states |
| 76 | + }); |
| 77 | + } |
| 78 | + |
| 79 | + // *** FLASH Memory *** |
| 80 | + let one_byte = [0x12 as u8]; |
| 81 | + let two_bytes = [0xAB, 0xCD as u8]; |
| 82 | + let three_bytes = [0x12, 0x34, 0x56 as u8]; |
| 83 | + let four_bytes = [0xAB, 0xCD, 0xEF, 0xBA as u8]; |
| 84 | + let eight_bytes = [0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0 as u8]; |
| 85 | + let sixteen_bytes = [ |
| 86 | + 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, 0xDE, 0xF0, 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC, |
| 87 | + 0xDE, 0xF0 as u8, |
| 88 | + ]; |
| 89 | + let mut flash = dp.FLASH.constrain(); |
| 90 | + let mut flash_writer = flash.writer::<2048>(FlashSize::Sz256K); |
| 91 | + |
| 92 | + const FLASH_SPACING: u32 = 16; // Separate flash writes by 16 bytes |
| 93 | + const FLASH_EXAMPLE_START_ADDRESS: u32 = 0x1FC00; |
| 94 | + |
| 95 | + logger::info!( |
| 96 | + "Erasing 128 bytes at address {}", |
| 97 | + FLASH_EXAMPLE_START_ADDRESS |
| 98 | + ); |
| 99 | + flash_writer |
| 100 | + .erase(FLASH_EXAMPLE_START_ADDRESS, 128) |
| 101 | + .unwrap(); // Erase entire page |
| 102 | + |
| 103 | + for i in 0..6 { |
| 104 | + match i { |
| 105 | + 0 => { |
| 106 | + // This test should fail, as the data needs to be divisible by 8 and force padding is false |
| 107 | + let result = flash_writer.write( |
| 108 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 109 | + &one_byte, |
| 110 | + false, |
| 111 | + ); |
| 112 | + assert!(result.is_err()); |
| 113 | + assert_eq!( |
| 114 | + result.err().unwrap(), |
| 115 | + stm32g4xx_hal::flash::Error::ArrayMustBeDivisibleBy8 |
| 116 | + ); |
| 117 | + |
| 118 | + // This test should pass, as the data needs to be divisible by 8 and force padding is true, so the one_byte array will be padded with 7 bytes of 0xFF |
| 119 | + let result = flash_writer.write( |
| 120 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 121 | + &one_byte, |
| 122 | + true, |
| 123 | + ); |
| 124 | + assert!(result.is_ok()); |
| 125 | + logger::info!( |
| 126 | + "Wrote 1 byte to address {}", |
| 127 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING |
| 128 | + ); |
| 129 | + } |
| 130 | + 1 => { |
| 131 | + // This test should fail, as the data needs to be divisible by 8 and force padding is false |
| 132 | + let result = flash_writer.write( |
| 133 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 134 | + &two_bytes, |
| 135 | + false, |
| 136 | + ); |
| 137 | + assert!(result.is_err()); |
| 138 | + assert_eq!( |
| 139 | + result.err().unwrap(), |
| 140 | + stm32g4xx_hal::flash::Error::ArrayMustBeDivisibleBy8 |
| 141 | + ); |
| 142 | + |
| 143 | + // This test should pass, as the data needs to be divisible by 8 and force padding is true, so the one_byte array will be padded with 7 bytes of 0xFF |
| 144 | + let result = flash_writer.write( |
| 145 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 146 | + &two_bytes, |
| 147 | + true, |
| 148 | + ); |
| 149 | + assert!(result.is_ok()); |
| 150 | + logger::info!( |
| 151 | + "Wrote 2 bytes to address {}", |
| 152 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING |
| 153 | + ); |
| 154 | + } |
| 155 | + 2 => { |
| 156 | + // This test should fail, as the data needs to be divisible by 8 and force padding is false |
| 157 | + let result = flash_writer.write( |
| 158 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 159 | + &three_bytes, |
| 160 | + false, |
| 161 | + ); |
| 162 | + assert!(result.is_err()); |
| 163 | + assert_eq!( |
| 164 | + result.err().unwrap(), |
| 165 | + stm32g4xx_hal::flash::Error::ArrayMustBeDivisibleBy8 |
| 166 | + ); |
| 167 | + |
| 168 | + // This test should pass, as the data needs to be divisible by 8 and force padding is true, so the one_byte array will be padded with 7 bytes of 0xFF |
| 169 | + let result = flash_writer.write( |
| 170 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 171 | + &three_bytes, |
| 172 | + true, |
| 173 | + ); |
| 174 | + assert!(result.is_ok()); |
| 175 | + logger::info!( |
| 176 | + "Wrote 3 bytes to address {}", |
| 177 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING |
| 178 | + ); |
| 179 | + } |
| 180 | + 3 => { |
| 181 | + // This test should fail, as the data needs to be divisible by 8 and force padding is false |
| 182 | + let result = flash_writer.write( |
| 183 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 184 | + &four_bytes, |
| 185 | + false, |
| 186 | + ); |
| 187 | + assert!(result.is_err()); |
| 188 | + assert_eq!( |
| 189 | + result.err().unwrap(), |
| 190 | + stm32g4xx_hal::flash::Error::ArrayMustBeDivisibleBy8 |
| 191 | + ); |
| 192 | + |
| 193 | + // This test should pass, as the data needs to be divisible by 8 and force padding is true, so the one_byte array will be padded with 7 bytes of 0xFF |
| 194 | + let result = flash_writer.write( |
| 195 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 196 | + &four_bytes, |
| 197 | + true, |
| 198 | + ); |
| 199 | + assert!(result.is_ok()); |
| 200 | + logger::info!( |
| 201 | + "Wrote 4 bytes to address {}", |
| 202 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING |
| 203 | + ); |
| 204 | + } |
| 205 | + 4 => { |
| 206 | + flash_writer |
| 207 | + .write( |
| 208 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 209 | + &eight_bytes, |
| 210 | + false, |
| 211 | + ) |
| 212 | + .unwrap(); |
| 213 | + logger::info!( |
| 214 | + "Wrote 8 bytes to address {}", |
| 215 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING |
| 216 | + ); |
| 217 | + } |
| 218 | + 5 => { |
| 219 | + flash_writer |
| 220 | + .write(FLASH_EXAMPLE_START_ADDRESS + i * 16, &sixteen_bytes, false) |
| 221 | + .unwrap(); |
| 222 | + logger::info!( |
| 223 | + "Wrote 16 bytes to address {}", |
| 224 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING |
| 225 | + ); |
| 226 | + } |
| 227 | + _ => (), |
| 228 | + } |
| 229 | + } |
| 230 | + |
| 231 | + logger::info!("Validating data written data by performing read and compare"); |
| 232 | + |
| 233 | + for i in 0..6 { |
| 234 | + match i { |
| 235 | + 0 => { |
| 236 | + let bytes = flash_writer |
| 237 | + .read(FLASH_EXAMPLE_START_ADDRESS as u32, one_byte.len()) |
| 238 | + .unwrap(); |
| 239 | + assert!(compare_arrays(&bytes, &one_byte)); |
| 240 | + logger::info!("Validated 1 byte data"); |
| 241 | + } |
| 242 | + 1 => { |
| 243 | + let bytes = flash_writer |
| 244 | + .read( |
| 245 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 246 | + two_bytes.len(), |
| 247 | + ) |
| 248 | + .unwrap(); |
| 249 | + assert!(compare_arrays(&bytes, &two_bytes)); |
| 250 | + logger::info!("Validated 2 byte data"); |
| 251 | + } |
| 252 | + 2 => { |
| 253 | + let bytes = flash_writer |
| 254 | + .read( |
| 255 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 256 | + three_bytes.len(), |
| 257 | + ) |
| 258 | + .unwrap(); |
| 259 | + assert!(compare_arrays(&bytes, &three_bytes)); |
| 260 | + logger::info!("Validated 3 byte data"); |
| 261 | + } |
| 262 | + 3 => { |
| 263 | + let bytes = flash_writer |
| 264 | + .read( |
| 265 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 266 | + four_bytes.len(), |
| 267 | + ) |
| 268 | + .unwrap(); |
| 269 | + assert!(compare_arrays(&bytes, &four_bytes)); |
| 270 | + logger::info!("Validated 4 byte data"); |
| 271 | + } |
| 272 | + 4 => { |
| 273 | + let bytes = flash_writer |
| 274 | + .read( |
| 275 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 276 | + eight_bytes.len(), |
| 277 | + ) |
| 278 | + .unwrap(); |
| 279 | + assert!(compare_arrays(&bytes, &eight_bytes)); |
| 280 | + logger::info!("Validated 8 byte data"); |
| 281 | + } |
| 282 | + 5 => { |
| 283 | + let bytes = flash_writer |
| 284 | + .read( |
| 285 | + FLASH_EXAMPLE_START_ADDRESS + i * FLASH_SPACING, |
| 286 | + sixteen_bytes.len(), |
| 287 | + ) |
| 288 | + .unwrap(); |
| 289 | + assert!(compare_arrays(&bytes, &sixteen_bytes)); |
| 290 | + logger::info!("Validated 5 byte data"); |
| 291 | + } |
| 292 | + _ => (), |
| 293 | + } |
| 294 | + } |
| 295 | + |
| 296 | + logger::info!( |
| 297 | + "Finished flash example at address {}", |
| 298 | + FLASH_EXAMPLE_START_ADDRESS |
| 299 | + ); |
| 300 | + |
| 301 | + ( |
| 302 | + // Initialization of shared resources |
| 303 | + Shared {}, |
| 304 | + // Initialization of task local resources |
| 305 | + Local {}, |
| 306 | + // Move the monotonic timer to the RTIC run-time, this enables |
| 307 | + // scheduling |
| 308 | + init::Monotonics(), |
| 309 | + ) |
| 310 | + } |
| 311 | + |
| 312 | + // Background task, runs whenever no other tasks are running |
| 313 | + #[idle] |
| 314 | + fn idle(mut cx: idle::Context) -> ! { |
| 315 | + loop { |
| 316 | + // Sleep until next interrupt |
| 317 | + cortex_m::asm::wfi(); |
| 318 | + } |
| 319 | + } |
| 320 | +} |
0 commit comments