Skip to content

BPcells doesn't work with chromatin Assay #1507

@LucaTucciarone

Description

@LucaTucciarone

BPCells doesn't wok with chromatin assay

I am working with a big multiomics object. I updated Seurat to Version 5, because I need the support of BPcells to avoid breaking R because of the size of the matrix I am working with.

This works just fine:
reference = readRDS(multiome.dir)
DefaultAssay(reference) <- 'ATAC'
write_matrix_dir(mat = reference[["ATAC"]]$counts, dir = paste0(reference.map.dir, "multiome_counts"))

304316 x 57064 IterableMatrix object with class MatrixDir
Row names: chr1-100006443-100006958, chr1-10001125-10001359 ... chrY-9160959-9161339
Col names: JB_631_627_AAACATGCAAGGTCCT-1, JB_631_627_AAACCGAAGTAACCCG-1 ... QY_2021_2020_GTGGTTAGTCTTACTA-1
Data type: double
Storage order: column major
Queued Operations:

  1. Load compressed matrix from directory /nfs/lab/projects/Heart_LV/data/reference.map/multiome_counts

counts.mat <- open_matrix_dir(dir = paste0(reference.map.dir, "multiome_counts"))

Then here I get the error:
reference[["ATAC"]]$counts <- counts.mat

Error:
Error in SetAssayData.ChromatinAssay(object = object, slot = layer, new.data = value): Data must be a matrix or sparseMatrix

thoughts?
Here my session info:
R version 4.2.3 (2023-03-15)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS

Matrix products: default
BLAS/LAPACK: /home/luca/.conda/envs/seurat5_bpcells/lib/libopenblasp-r0.3.24.so

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] grid parallel stats4 stats graphics grDevices utils
[8] datasets methods base

other attached packages:
[1] ggh4x_0.2.6 patchwork_1.1.3
[3] gridExtra_2.3 ggbreak_0.1.2
[5] ggrepel_0.9.3 ggpubr_0.6.0
[7] ggplot2_3.4.3 logr_1.3.4
[9] EnsDb.Hsapiens.v86_2.99.0 ensembldb_2.22.0
[11] AnnotationFilter_1.22.0 GenomicFeatures_1.50.4
[13] AnnotationDbi_1.60.2 Biobase_2.58.0
[15] GenomicRanges_1.50.2 GenomeInfoDb_1.34.9
[17] IRanges_2.32.0 S4Vectors_0.36.2
[19] BiocGenerics_0.44.0 BPCells_0.1.0
[21] SoupX_1.6.2 knitr_1.44
[23] harmony_1.0.3 Rcpp_1.0.11
[25] Signac_1.11.9000 Seurat_4.9.9.9067
[27] SeuratObject_4.9.9.9091 sp_2.1-0
[29] hdf5r_1.3.8 Matrix_1.6-1.1
[31] tidyr_1.3.0 data.table_1.14.8
[33] stringr_1.5.0 dplyr_1.1.3
[35] reticulate_1.32.0

loaded via a namespace (and not attached):
[1] pacman_0.5.1 utf8_1.2.3
[3] spatstat.explore_3.2-3 tidyselect_1.2.0
[5] RSQLite_2.3.1 htmlwidgets_1.6.2
[7] BiocParallel_1.32.6 Rtsne_0.16
[9] munsell_0.5.0 codetools_0.2-19
[11] ica_1.0-3 pbdZMQ_0.3-10
[13] future_1.33.0 miniUI_0.1.1.1
[15] withr_2.5.1 spatstat.random_3.1-6
[17] colorspace_2.1-0 progressr_0.14.0
[19] filelock_1.0.2 uuid_1.1-1
[21] ROCR_1.0-11 ggsignif_0.6.4
[23] tensor_1.5 listenv_0.9.0
[25] MatrixGenerics_1.10.0 repr_1.1.6
[27] GenomeInfoDbData_1.2.9 polyclip_1.10-6
[29] bit64_4.0.5 parallelly_1.36.0
[31] vctrs_0.6.3 generics_0.1.3
[33] xfun_0.40 BiocFileCache_2.6.1
[35] R6_2.5.1 gridGraphics_0.5-1
[37] DelayedArray_0.24.0 bitops_1.0-7
[39] spatstat.utils_3.0-3 cachem_1.0.8
[41] promises_1.2.1 BiocIO_1.8.0
[43] scales_1.2.1 gtable_0.3.4
[45] globals_0.16.2 goftest_1.2-3
[47] spam_2.9-1 rlang_1.1.1
[49] RcppRoll_0.3.0 splines_4.2.3
[51] rstatix_0.7.2 rtracklayer_1.58.0
[53] lazyeval_0.2.2 broom_1.0.5
[55] spatstat.geom_3.2-5 yaml_2.3.7
[57] reshape2_1.4.4 abind_1.4-5
[59] backports_1.4.1 httpuv_1.6.11
[61] tools_4.2.3 ggplotify_0.1.2
[63] ellipsis_0.3.2 RColorBrewer_1.1-3
[65] ggridges_0.5.4 plyr_1.8.9
[67] base64enc_0.1-3 progress_1.2.2
[69] zlibbioc_1.44.0 purrr_1.0.2
[71] RCurl_1.98-1.12 prettyunits_1.2.0
[73] deldir_1.0-9 pbapply_1.7-2
[75] cowplot_1.1.1 zoo_1.8-12
[77] SummarizedExperiment_1.28.0 cluster_2.1.4
[79] fs_1.6.3 magrittr_2.0.3
[81] RSpectra_0.16-1 scattermore_1.2
[83] lmtest_0.9-40 RANN_2.6.1
[85] ProtGenerics_1.30.0 fitdistrplus_1.1-11
[87] matrixStats_1.0.0 hms_1.1.3
[89] mime_0.12 evaluate_0.22
[91] xtable_1.8-4 XML_3.99-0.14
[93] fastDummies_1.7.3 compiler_4.2.3
[95] biomaRt_2.54.1 tibble_3.2.1
[97] KernSmooth_2.23-22 crayon_1.5.2
[99] htmltools_0.5.6.1 ggfun_0.1.3
[101] later_1.3.1 aplot_0.2.2
[103] DBI_1.1.3 dbplyr_2.3.4
[105] MASS_7.3-60 rappdirs_0.3.3
[107] car_3.1-2 cli_3.6.1
[109] dotCall64_1.0-2 igraph_1.5.1
[111] pkgconfig_2.0.3 GenomicAlignments_1.34.1
[113] IRdisplay_1.1 plotly_4.10.2
[115] spatstat.sparse_3.0-2 xml2_1.3.5
[117] XVector_0.38.0 yulab.utils_0.1.0
[119] digest_0.6.33 sctransform_0.4.0
[121] RcppAnnoy_0.0.21 common_1.0.9
[123] spatstat.data_3.0-1 Biostrings_2.66.0
[125] leiden_0.4.3 fastmatch_1.1-4
[127] uwot_0.1.16 restfulr_0.0.15
[129] curl_5.1.0 shiny_1.7.5
[131] Rsamtools_2.14.0 rjson_0.2.21
[133] lifecycle_1.0.3 nlme_3.1-163
[135] jsonlite_1.8.7 carData_3.0-5
[137] viridisLite_0.4.2 fansi_1.0.4
[139] pillar_1.9.0 lattice_0.21-9
[141] KEGGREST_1.38.0 fastmap_1.1.1
[143] httr_1.4.7 survival_3.5-7
[145] glue_1.6.2 png_0.1-8
[147] bit_4.0.5 stringi_1.7.12
[149] blob_1.2.4 RcppHNSW_0.5.0
[151] memoise_2.0.1 IRkernel_1.3.2
[153] irlba_2.3.5.1 future.apply_1.11.0

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or request

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions