@@ -484,7 +484,10 @@ def sliding_dot_product(Q, T):
484484 return QT .real [m - 1 : n ]
485485
486486
487- @njit ("f8[:](f8[:], i8, b1[:])" , fastmath = {"nsz" , "arcp" , "contract" , "afn" , "reassoc" })
487+ @njit (
488+ # "f8[:](f8[:], i8, b1[:])",
489+ fastmath = {"nsz" , "arcp" , "contract" , "afn" , "reassoc" }
490+ )
488491def _welford_nanvar (a , w , a_subseq_isfinite ):
489492 """
490493 Compute the rolling variance for a 1-D array while ignoring NaNs using a modified
@@ -831,7 +834,10 @@ def compute_mean_std(T, m):
831834 )
832835
833836
834- @njit ("f8(i8, f8, f8, f8, f8, f8)" , fastmath = True )
837+ @njit (
838+ # "f8(i8, f8, f8, f8, f8, f8)",
839+ fastmath = True
840+ )
835841def _calculate_squared_distance (m , QT , μ_Q , σ_Q , M_T , Σ_T ):
836842 """
837843 Compute a single squared distance given all scalar inputs. This function serves as
@@ -889,7 +895,11 @@ def _calculate_squared_distance(m, QT, μ_Q, σ_Q, M_T, Σ_T):
889895 return D_squared
890896
891897
892- @njit ("f8[:](i8, f8[:], f8, f8, f8[:], f8[:])" , parallel = True , fastmath = True )
898+ @njit (
899+ # "f8[:](i8, f8[:], f8, f8, f8[:], f8[:])",
900+ parallel = True ,
901+ fastmath = True ,
902+ )
893903def _calculate_squared_distance_profile (m , QT , μ_Q , σ_Q , M_T , Σ_T ):
894904 """
895905 Compute the squared distance profile
@@ -935,7 +945,11 @@ def _calculate_squared_distance_profile(m, QT, μ_Q, σ_Q, M_T, Σ_T):
935945 return D_squared
936946
937947
938- @njit ("f8[:](i8, f8[:], f8, f8, f8[:], f8[:])" , parallel = True , fastmath = True )
948+ @njit (
949+ # "f8[:](i8, f8[:], f8, f8, f8[:], f8[:])",
950+ parallel = True ,
951+ fastmath = True ,
952+ )
939953def calculate_distance_profile (m , QT , μ_Q , σ_Q , M_T , Σ_T ):
940954 """
941955 Compute the distance profile
@@ -977,7 +991,10 @@ def calculate_distance_profile(m, QT, μ_Q, σ_Q, M_T, Σ_T):
977991 return np .sqrt (D_squared )
978992
979993
980- @njit ("f8[:](f8, f8[:], f8[:])" , fastmath = True )
994+ @njit (
995+ # "f8[:](f8, f8[:], f8[:])",
996+ fastmath = True
997+ )
981998def _mass_absolute (Q_squared , T_squared , QT ):
982999 """
9831000 A Numba JIT compiled algorithm for computing the non-normalized distance profile
@@ -1182,7 +1199,10 @@ def mueen_calculate_distance_profile(Q, T):
11821199 return np .sqrt (D )
11831200
11841201
1185- @njit ("f8[:](f8[:], f8[:], f8[:], f8, f8, f8[:], f8[:])" , fastmath = True )
1202+ @njit (
1203+ # "f8[:](f8[:], f8[:], f8[:], f8, f8, f8[:], f8[:])",
1204+ fastmath = True
1205+ )
11861206def _mass (Q , T , QT , μ_Q , σ_Q , M_T , Σ_T ):
11871207 """
11881208 A Numba JIT compiled algorithm for computing the distance profile using the MASS
@@ -1401,7 +1421,10 @@ def _get_QT(start, T_A, T_B, m):
14011421 return QT , QT_first
14021422
14031423
1404- @njit (["(f8[:], i8, i8)" , "(f8[:, :], i8, i8)" ], fastmath = True )
1424+ @njit (
1425+ # ["(f8[:], i8, i8)", "(f8[:, :], i8, i8)"],
1426+ fastmath = True
1427+ )
14051428def apply_exclusion_zone (D , idx , excl_zone ):
14061429 """
14071430 Apply an exclusion zone to an array (inplace), i.e. set all values
@@ -1606,7 +1629,11 @@ def array_to_temp_file(a):
16061629 return fname
16071630
16081631
1609- @njit ("i8[:](i8[:], i8, i8, i8)" , parallel = True , fastmath = True )
1632+ @njit (
1633+ # "i8[:](i8[:], i8, i8, i8)",
1634+ parallel = True ,
1635+ fastmath = True ,
1636+ )
16101637def _count_diagonal_ndist (diags , m , n_A , n_B ):
16111638 """
16121639 Count the number of distances that would be computed for each diagonal index
@@ -1642,7 +1669,9 @@ def _count_diagonal_ndist(diags, m, n_A, n_B):
16421669 return diag_ndist_counts
16431670
16441671
1645- @njit ("i8[:, :](i8[:], i8, b1)" )
1672+ @njit (
1673+ # "i8[:, :](i8[:], i8, b1)"
1674+ )
16461675def _get_array_ranges (a , n_chunks , truncate ):
16471676 """
16481677 Given an input array, split it into `n_chunks`.
0 commit comments