|
1 | | -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2 | | -% % |
3 | | -% SU2 configuration file % |
4 | | -% Case description: Turbulent flow over flat plate with zero pressure gradient % |
5 | | -% Author: Thomas D. Economon % |
6 | | -% Institution: Stanford University % |
7 | | -% Date: 2011.11.10 % |
8 | | -% File Version 5.0.0 "Raven" % |
9 | | -% % |
10 | | -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 2 | +% % |
| 3 | +% SU2 configuration file % |
| 4 | +% Case description: Turbulent flow over rough flat plate with zero pressure gradient % |
| 5 | +% Author: Thomas D. Economon % |
| 6 | +% Institution: Stanford University % |
| 7 | +% Date: 2011.11.10 % |
| 8 | +% File Version 8.3.0 "Harrier" % |
| 9 | +% % |
| 10 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
11 | 11 |
|
12 | 12 | % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% |
13 | 13 | % |
14 | | -% Physical governing equations (EULER, NAVIER_STOKES, |
15 | | -% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, |
16 | | -% POISSON_EQUATION) |
17 | 14 | SOLVER= RANS |
18 | | -% |
19 | | -% If Navier-Stokes, kind of turbulent model (NONE, SA, SA_NEG, SST) |
20 | 15 | KIND_TURB_MODEL= SST |
21 | 16 | WALL_ROUGHNESS = (wall, 400e-6) |
22 | 17 | KIND_ROUGHSST_MODEL = LIMITER_AUPOIX |
23 | | -% |
24 | | -% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) |
25 | 18 | MATH_PROBLEM= DIRECT |
26 | | -% |
27 | | -% Restart solution (NO, YES) |
28 | 19 | RESTART_SOL= NO |
29 | 20 | READ_BINARY_RESTART= YES |
30 | 21 |
|
31 | 22 | % ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% |
32 | | -% |
33 | | -% Mach number (non-dimensional, based on the free-stream values) |
34 | 23 | MACH_NUMBER= 0.2 |
35 | | -% |
36 | | -% Angle of attack (degrees) |
37 | 24 | AOA= 0.0 |
38 | | -% |
39 | | -% Side-slip angle (degrees) |
40 | 25 | SIDESLIP_ANGLE= 0.0 |
41 | | -% |
42 | | -% Free-stream temperature (288.15 K by default) |
43 | 26 | FREESTREAM_TEMPERATURE= 300.0 |
44 | | -% |
45 | | -% Reynolds number (non-dimensional, based on the free-stream values) |
46 | 27 | REYNOLDS_NUMBER= 5000000.0 |
47 | | -% |
48 | | -% Reynolds length (in meters) |
49 | 28 | REYNOLDS_LENGTH= 1.0 |
50 | 29 |
|
51 | 30 | % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% |
52 | 31 | % |
53 | | -% Reference origin for moment computation |
54 | 32 | REF_ORIGIN_MOMENT_X = 0.25 |
55 | 33 | REF_ORIGIN_MOMENT_Y = 0.00 |
56 | 34 | REF_ORIGIN_MOMENT_Z = 0.00 |
57 | | -% |
58 | | -% Reference length for pitching, rolling, and yawing non-dimensional moment |
59 | 35 | REF_LENGTH= 1.0 |
60 | | -% |
61 | | -% Reference area for force coefficients (0 implies automatic calculation) |
62 | 36 | REF_AREA= 2.0 |
63 | 37 |
|
64 | 38 | % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% |
65 | 39 | % |
66 | | -% Navier-Stokes wall boundary marker(s) (NONE = no marker) |
67 | 40 | MARKER_HEATFLUX= ( wall, 0.0 ) |
68 | | -% |
69 | | -% Inlet boundary marker(s) (NONE = no marker) |
70 | | -% Format: ( inlet marker, total temperature, total pressure, flow_direction_x, |
71 | | -% flow_direction_y, flow_direction_z, ... ) |
72 | 41 | MARKER_INLET= ( inlet, 302.4, 118309.784, 1.0, 0.0, 0.0 ) |
73 | | -% |
74 | | -% Outlet boundary marker(s) (NONE = no marker) |
75 | | -% Format: ( outlet marker, back pressure, ... ) |
76 | 42 | MARKER_OUTLET= ( outlet, 115056.0, farfield, 115056.0 ) |
77 | | -% |
78 | | -% Symmetry boundary marker(s) (NONE = no marker) |
79 | 43 | MARKER_SYM= ( symmetry ) |
80 | | -% |
81 | | -% Marker(s) of the surface to be plotted or designed |
82 | 44 | MARKER_PLOTTING= ( wall ) |
83 | | -% |
84 | | -% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated |
85 | 45 | MARKER_MONITORING= ( wall ) |
86 | 46 |
|
87 | 47 | % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% |
88 | 48 | % |
89 | | -% Numerical method for spatial gradients (GREEN_GAUSS, LEAST_SQUARES, |
90 | | -% WEIGHTED_LEAST_SQUARES) |
91 | 49 | NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES |
92 | | -% |
93 | | -% Courant-Friedrichs-Lewy condition of the finest grid |
94 | 50 | CFL_NUMBER= 100.0 |
95 | | -% |
96 | | -% Adaptive CFL number (NO, YES) |
97 | 51 | CFL_ADAPT= YES |
98 | | -% |
99 | | -% Parameters of the adaptive CFL number (factor down, factor up, CFL min value, |
100 | | -% CFL max value ) |
101 | 52 | CFL_ADAPT_PARAM= ( 0.1, 2.0, 100.0, 1e5 ) |
102 | | -% |
103 | | -% Runge-Kutta alpha coefficients |
104 | 53 | RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) |
105 | | -% |
106 | | -% Number of total iterations |
107 | 54 | ITER= 99999 |
108 | 55 |
|
109 | 56 | % ----------------------- SLOPE LIMITER DEFINITION ----------------------------% |
110 | 57 | % |
111 | | -% Coefficient for the limiter |
112 | 58 | VENKAT_LIMITER_COEFF= 0.1 |
113 | | -% |
114 | | -% Coefficient for the sharp edges limiter |
115 | 59 | ADJ_SHARP_LIMITER_COEFF= 3.0 |
116 | | -% |
117 | | -% Reference coefficient (sensitivity) for detecting sharp edges. |
118 | 60 | REF_SHARP_EDGES= 3.0 |
119 | | -% |
120 | | -% Remove sharp edges from the sensitivity evaluation (NO, YES) |
121 | 61 | SENS_REMOVE_SHARP= NO |
122 | 62 |
|
123 | 63 | % -------------------------- MULTIGRID PARAMETERS -----------------------------% |
124 | 64 | % |
125 | | -% Multi-Grid Levels (0 = no multi-grid) |
126 | 65 | MGLEVEL= 0 |
127 | | -% |
128 | | -% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) |
129 | | -MGCYCLE= V_CYCLE |
130 | | -% |
131 | | -% Multi-grid pre-smoothing level |
132 | | -MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) |
133 | | -% |
134 | | -% Multi-grid post-smoothing level |
135 | | -MG_POST_SMOOTH= ( 2, 2, 2, 2) |
136 | | -% |
137 | | -% Jacobi implicit smoothing of the correction |
138 | | -MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) |
139 | | -% |
140 | | -% Damping factor for the residual restriction |
141 | | -MG_DAMP_RESTRICTION= 0.8 |
142 | | -% |
143 | | -% Damping factor for the correction prolongation |
144 | | -MG_DAMP_PROLONGATION= 0.8 |
145 | | - |
146 | 66 | % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% |
147 | 67 | % |
148 | | -% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, |
149 | | -% TURKEL_PREC, MSW) |
150 | 68 | CONV_NUM_METHOD_FLOW= ROE |
151 | 69 | % |
152 | | -% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. |
153 | | -% Required for 2nd order upwind schemes (NO, YES) |
154 | 70 | MUSCL_FLOW= YES |
155 | | -% |
156 | | -% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, |
157 | | -% BARTH_JESPERSEN, VAN_ALBADA_EDGE) |
158 | 71 | SLOPE_LIMITER_FLOW= NONE |
159 | | -% |
160 | | -% 2nd and 4th order artificial dissipation coefficients |
161 | 72 | JST_SENSOR_COEFF= ( 0.5, 0.02 ) |
162 | | -% |
163 | | -% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) |
164 | 73 | TIME_DISCRE_FLOW= EULER_IMPLICIT |
165 | 74 |
|
166 | 75 | % -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% |
167 | 76 | % |
168 | | -% Convective numerical method (SCALAR_UPWIND) |
| 77 | + |
169 | 78 | CONV_NUM_METHOD_TURB= SCALAR_UPWIND |
170 | | -% |
171 | | -% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations. |
172 | | -% Required for 2nd order upwind schemes (NO, YES) |
173 | 79 | MUSCL_TURB= NO |
174 | | -% |
175 | | -% Slope limiter (VENKATAKRISHNAN, MINMOD) |
176 | 80 | SLOPE_LIMITER_TURB= VENKATAKRISHNAN |
177 | | -% |
178 | | -% Time discretization (EULER_IMPLICIT) |
179 | 81 | TIME_DISCRE_TURB= EULER_IMPLICIT |
180 | 82 |
|
181 | 83 | % --------------------------- CONVERGENCE PARAMETERS --------------------------% |
182 | 84 | % |
183 | | -% Convergence criteria (CAUCHY, RESIDUAL) |
184 | 85 | CONV_FIELD= RMS_DENSITY |
185 | | -% |
186 | | -% Min value of the residual (log10 of the residual) |
187 | 86 | CONV_RESIDUAL_MINVAL= -14 |
188 | | -% |
189 | | -% Start convergence criteria at iteration number |
190 | 87 | CONV_STARTITER= 10 |
191 | | -% |
192 | | -% Number of elements to apply the criteria |
193 | 88 | CONV_CAUCHY_ELEMS= 100 |
194 | | -% |
195 | | -% Epsilon to control the series convergence |
196 | 89 | CONV_CAUCHY_EPS= 1E-6 |
197 | 90 | % |
198 | 91 |
|
199 | 92 | % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% |
200 | 93 | % |
201 | | -% Mesh input file |
202 | 94 | MESH_FILENAME= mesh_flatplate_turb_137x97.su2 |
203 | | -% |
204 | | -% Mesh input file format (SU2, CGNS, NETCDF_ASCII) |
205 | 95 | MESH_FORMAT= SU2 |
206 | | -% |
207 | | -% Mesh output file |
208 | 96 | MESH_OUT_FILENAME= mesh_out.su2 |
209 | | -% |
210 | | -% Restart flow input file |
211 | 97 | SOLUTION_FILENAME= solution_flow.dat |
212 | | -% |
213 | | -% Restart adjoint input file |
214 | 98 | SOLUTION_ADJ_FILENAME= solution_adj.dat |
215 | | -% |
216 | | -% Output file format (PARAVIEW, TECPLOT, SLT) |
217 | 99 | TABULAR_FORMAT= CSV |
218 | | -% |
219 | | -% Output file convergence history (w/o extension) |
220 | 100 | CONV_FILENAME= history |
221 | | -% |
222 | | -% Output file restart flow |
223 | 101 | RESTART_FILENAME= restart_flow.dat |
224 | | -% |
225 | | -% Output file restart adjoint |
226 | 102 | RESTART_ADJ_FILENAME= restart_adj.dat |
227 | | -% |
228 | | -% Output file flow (w/o extension) variables |
229 | 103 | VOLUME_FILENAME= flow |
230 | | -% |
231 | | -% Output file adjoint (w/o extension) variables |
232 | 104 | VOLUME_ADJ_FILENAME= adjoint |
233 | | -% |
234 | | -% Output objective function gradient (using continuous adjoint) |
235 | 105 | GRAD_OBJFUNC_FILENAME= of_grad.dat |
236 | | -% |
237 | | -% Output file surface flow coefficient (w/o extension) |
238 | 106 | SURFACE_FILENAME= surface_flow |
239 | | -% |
240 | | -% Output file surface adjoint coefficient (w/o extension) |
241 | 107 | SURFACE_ADJ_FILENAME= surface_adjoint |
242 | | -% |
243 | | -% Writing solution file frequency |
244 | 108 | OUTPUT_WRT_FREQ= 1000 |
245 | | -% |
246 | | -% |
247 | | -% Screen output |
248 | 109 | SCREEN_OUTPUT= (INNER_ITER, WALL_TIME, RMS_RES, LIFT, DRAG) |
0 commit comments