@@ -90,8 +90,8 @@ class CAvgGrad_TurbSA final : public CAvgGrad_Scalar<FlowIndices> {
9090 /* --- For Jacobians -> Use of TSL approx. to compute derivatives of the gradients ---*/
9191 su2double diffusion_coefficient = nu_e/sigma - cb2_sigma*nu_c;
9292 if (implicit) {
93- Jacobian_i[0 ][0 ] = 0.5 * ( diffusion_coefficient * -proj_vector_ij) ; // exact: ((1+cb2)*0.5 * Proj_Mean_GradScalarVar[0]-nu_e*proj_vector_ij)/sigma - cb2_sigma * (Proj_Mean_GradScalarVar[0] - ScalarVar_i[0] * proj_vector_ij);
94- Jacobian_j[0 ][0 ] = 0.5 * ( diffusion_coefficient * proj_vector_ij); // exact: ((1+cb2)*0.5 * Proj_Mean_GradScalarVar[0]+nu_e*proj_vector_ij)/sigma - cb2_sigma * ScalarVar_i[0] * proj_vector_ij;
93+ Jacobian_i[0 ][0 ] = diffusion_coefficient* -proj_vector_ij; // ((1+cb2)*0.5 * Proj_Mean_GradScalarVar[0]-nu_e*proj_vector_ij)/sigma - cb2_sigma * (Proj_Mean_GradScalarVar[0] - ScalarVar_i[0] * proj_vector_ij);
94+ Jacobian_j[0 ][0 ] = diffusion_coefficient* proj_vector_ij; // ((1+cb2)*0.5 * Proj_Mean_GradScalarVar[0]+nu_e*proj_vector_ij)/sigma - cb2_sigma * ScalarVar_i[0] * proj_vector_ij;
9595 }
9696 }
9797
@@ -184,29 +184,6 @@ class CAvgGrad_TurbSA_Neg final : public CAvgGrad_Scalar<FlowIndices> {
184184 su2double term_2 = cb2*nu_tilde_i*fn_i* Proj_Mean_GradScalarVar[0 ]/sigma;
185185 Flux[0 ] = term_1 - term_2;
186186
187- /* --- Buffer to store the values (prints values of all nodes per iteration) DELTE LATER */
188-
189- // unsigned long iter = config->GetMultizone_Problem() ? config->GetOuterIter() : config->GetInnerIter();
190- // std::ofstream URF_log_file;
191-
192- // URF_log_file.open("diffusion_term.dat", std::ios::app);
193- // if (!URF_log_file.is_open()) {
194- // std::cerr << "Unable to open under_relaxation_buffer.dat" << std::endl;
195- // }
196-
197-
198- // if (URF_log_file.is_open()) {
199- // URF_log_file << "Iteration: " << iter << std::endl;
200- // URF_log_file << "Term 1: " << (nu_ij + (1 + cb2)*nu_tilde_ij*fn_i)/sigma << std::endl;
201- // URF_log_file << "Term 2: " << cb2*nu_tilde_i*fn_i/sigma << std::endl;
202- // URF_log_file << "total: " << (nu_ij + (1 + cb2)*nu_tilde_ij*fn_i)/sigma - cb2*nu_tilde_i*fn_i/sigma << std::endl;
203- // URF_log_file << std::endl;
204- // }
205-
206- // if (URF_log_file.is_open()) {
207- // URF_log_file.close();
208- // }
209-
210187 /* --- For Jacobians -> Use of TSL approx. to compute derivatives of the gradients
211188 * To form the exact jacobians, use the chain and product rules.
212189 * The diffusion coefficient following Diskin's approach is: A = (nu_ij + (1+cb2)*nut_tilde_ij -cb2*nu_tilde_i)*fn_i = B*fni + nu_ij
0 commit comments