|
| 1 | +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% |
| 2 | +% |
| 3 | +% Solver type (EULER, NAVIER_STOKES, RANS, |
| 4 | +% INC_EULER, INC_NAVIER_STOKES, INC_RANS, |
| 5 | +% NEMO_EULER, NEMO_NAVIER_STOKES, |
| 6 | +% FEM_EULER, FEM_NAVIER_STOKES, FEM_RANS, FEM_LES, |
| 7 | +% HEAT_EQUATION_FVM, ELASTICITY) |
| 8 | +SOLVER= RANS |
| 9 | +MATH_PROBLEM= DIRECT |
| 10 | +RESTART_SOL= YES |
| 11 | +DISCARD_INFILES= NO |
| 12 | +SYSTEM_MEASUREMENTS= SI |
| 13 | +KIND_TURB_MODEL= SST % (NONE, SA, SST) |
| 14 | +SST_OPTIONS= V2003m |
| 15 | +% |
| 16 | +% ------------------------------- SOLVER CONTROL ------------------------------% |
| 17 | +% |
| 18 | +ITER= 1000000 |
| 19 | +CONV_FIELD= RMS_DENSITY |
| 20 | +CONV_RESIDUAL_MINVAL= -11 |
| 21 | +CONV_STARTITER= 10 |
| 22 | +CONV_CAUCHY_ELEMS= 100 |
| 23 | +CONV_CAUCHY_EPS= 1E-11 |
| 24 | +% |
| 25 | +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% |
| 26 | +% |
| 27 | +REF_ORIGIN_MOMENT_X = 0.00 |
| 28 | +REF_ORIGIN_MOMENT_Y = 0.00 |
| 29 | +REF_ORIGIN_MOMENT_Z = 0.00 |
| 30 | +REF_LENGTH= 1.0 |
| 31 | +REF_VELOCITY= 1.0 |
| 32 | +REF_VISCOSITY= 1.0 |
| 33 | +REF_AREA= 1.0 |
| 34 | +% |
| 35 | +% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% |
| 36 | +% |
| 37 | +MACH_NUMBER= 0.088 |
| 38 | +AOA= 0 |
| 39 | +INIT_OPTION= REYNOLDS |
| 40 | +FREESTREAM_OPTION= TEMPERATURE_FS |
| 41 | +FREESTREAM_TEMPERATURE= 300 |
| 42 | +FREESTREAM_DENSITY= 1.2886 |
| 43 | +FREESTREAM_VELOCITY= ( 30.5552677, 0.00, 0.00 ) |
| 44 | +FREESTREAM_VISCOSITY= 1.853E-5 |
| 45 | +FREESTREAM_NU_FACTOR= 3 |
| 46 | +REYNOLDS_NUMBER= 1.2e6 |
| 47 | +REYNOLDS_LENGTH= 1.0 |
| 48 | +REF_DIMENSIONALIZATION= DIMENSIONAL |
| 49 | +% |
| 50 | +% --------------------------- VISCOSITY MODEL ---------------------------------% |
| 51 | +% |
| 52 | +% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY, POLYNOMIAL_VISCOSITY, FLAMELET). |
| 53 | +VISCOSITY_MODEL= SUTHERLAND |
| 54 | +MU_CONSTANT= 1.716E-5 |
| 55 | +MU_REF= 1.716E-5 |
| 56 | +MU_T_REF= 273.15 |
| 57 | +SUTHERLAND_CONSTANT= 110.4 |
| 58 | +% |
| 59 | +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% |
| 60 | +% |
| 61 | +% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker) |
| 62 | +% Format: ( marker name, constant heat flux (J/m^2), ... ) |
| 63 | +MARKER_HEATFLUX= (airfoil, 0.0) |
| 64 | +MARKER_FAR= (farfield) |
| 65 | +MARKER_PLOTTING = ( airfoil ) |
| 66 | +MARKER_MONITORING = ( airfoil ) |
| 67 | +MARKER_ANALYZE_AVERAGE = AREA |
| 68 | +% |
| 69 | +% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% |
| 70 | +% |
| 71 | +% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) |
| 72 | +NUM_METHOD_GRAD= GREEN_GAUSS |
| 73 | +CFL_NUMBER= 1000.0 %For coarser meshes 1000 converges fast; for finer meshes 10-100 works well |
| 74 | +CFL_ADAPT= NO |
| 75 | +CFL_ADAPT_PARAM= ( 0.95, 1.05, 0.001, 10000, 0.00001 ) |
| 76 | +% |
| 77 | +% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% |
| 78 | +% |
| 79 | +CONV_NUM_METHOD_FLOW= ROE |
| 80 | +MUSCL_FLOW= YES |
| 81 | +SLOPE_LIMITER_FLOW= VAN_ALBADA_EDGE |
| 82 | +TIME_DISCRE_FLOW= EULER_IMPLICIT |
| 83 | +% |
| 84 | +% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% |
| 85 | +% |
| 86 | +CONV_NUM_METHOD_TURB= SCALAR_UPWIND |
| 87 | +MUSCL_TURB= NO |
| 88 | +SLOPE_LIMITER_TURB= VENKATAKRISHNAN |
| 89 | +TIME_DISCRE_TURB= EULER_IMPLICIT |
| 90 | +% |
| 91 | +% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% |
| 92 | +% |
| 93 | +% Linear solver for implicit formulations (BCGSTAB, FGMRES) |
| 94 | +LINEAR_SOLVER= FGMRES |
| 95 | +LINEAR_SOLVER_PREC= LU_SGS |
| 96 | +LINEAR_SOLVER_ILU_FILL_IN= 0 |
| 97 | +LINEAR_SOLVER_ERROR= 1E-3 |
| 98 | +LINEAR_SOLVER_ITER= 20 |
| 99 | +% |
| 100 | +% ------------------------- SCREEN/HISTORY VOLUME OUTPUT --------------------------% |
| 101 | +% |
| 102 | +SCREEN_OUTPUT= (INNER_ITER, WALL_TIME, RMS_RES, LIFT, DRAG) |
| 103 | +HISTORY_OUTPUT= (INNER_ITER, WALL_TIME, RMS_RES, RMS_NU_TILDE, AERO_COEFF, FLOW_COEFF) |
| 104 | +VOLUME_OUTPUT = (COORDINATES, SOLUTION, PRIMITIVE, VORTEX_IDENTIFICATION, CFL_NUMBER, MESH_QUALITY, RESIDUALS) |
| 105 | +SCREEN_WRT_FREQ_INNER= 1 |
| 106 | +HISTORY_WRT_FREQ_INNER= 1 |
| 107 | +OUTPUT_WRT_FREQ= 500 |
| 108 | +WRT_PERFORMANCE= YES |
| 109 | +WRT_AD_STATISTICS= YES |
| 110 | +WRT_RESTART_OVERWRITE= YES |
| 111 | +WRT_SURFACE_OVERWRITE= YES |
| 112 | +WRT_VOLUME_OVERWRITE= YES |
| 113 | +WRT_FORCES_BREAKDOWN= YES |
| 114 | +% |
| 115 | +% ------------------------- INPUT/OUTPUT FILE INFORMATION --------------------------% |
| 116 | +% |
| 117 | +MESH_FILENAME= mesh_turb_dsma661_65.su2 % mesh_turb_dsma661_65.su2, mesh_turb_dsma661_129.su2, |
| 118 | + %mesh_turb_dsma661_257.su2, mesh_turb_dsma661_513.su2, mesh_turb_dsma661_1025.su2 |
| 119 | +MESH_FORMAT= SU2 |
| 120 | +% 149_29, 297_57, 593_113, 1185_225, 2369_449, |
| 121 | +RESTART_FILENAME= restart_flow-149_29.dat |
| 122 | +VOLUME_FILENAME= flow-149_29 |
| 123 | +BREAKDOWN_FILENAME= forces_breakdown-149_29.dat |
| 124 | +CONV_FILENAME= history-149_29 |
| 125 | +SURFACE_FILENAME= suface-149_29 |
| 126 | + |
| 127 | +MESH_OUT_FILENAME= mesh_out.su2 |
| 128 | +SOLUTION_FILENAME= sst_restart_flow-149_29.dat |
| 129 | +TABULAR_FORMAT= CSV |
| 130 | +OUTPUT_PRECISION= 15 |
| 131 | +% Files to output |
| 132 | +% Possible formats : (TECPLOT_ASCII, TECPLOT, SURFACE_TECPLOT_ASCII, |
| 133 | +% SURFACE_TECPLOT, CSV, SURFACE_CSV, PARAVIEW_ASCII, PARAVIEW_LEGACY, SURFACE_PARAVIEW_ASCII, |
| 134 | +% SURFACE_PARAVIEW_LEGACY, PARAVIEW, SURFACE_PARAVIEW, RESTART_ASCII, RESTART, CGNS, SURFACE_CGNS, STL_ASCII, STL_BINARY) |
| 135 | +% default : (RESTART, PARAVIEW, SURFACE_PARAVIEW) |
| 136 | +OUTPUT_FILES= (RESTART, PARAVIEW, SURFACE_PARAVIEW) |
| 137 | +VALUE_OBJFUNC_FILENAME= of_eval.dat |
| 138 | +READ_BINARY_RESTART= YES |
| 139 | +REORIENT_ELEMENTS= YES |
| 140 | +% |
0 commit comments