Skip to content

Commit 4c4fb2b

Browse files
committed
init commit
Signed-off-by: jtneedels <[email protected]>
1 parent f7b4e08 commit 4c4fb2b

File tree

2 files changed

+60
-0
lines changed

2 files changed

+60
-0
lines changed

_data/docs_v7.yml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,7 @@
3030
docs_v7:
3131
- Theory
3232
- Streamwise-Periodicity
33+
- Thermochemical-Nonequilibrium
3334

3435
- title: Users Guide
3536
docs_v7:
Lines changed: 59 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,59 @@
1+
---
2+
title: Thermochemical Nonequilibrium
3+
permalink: /docs_v7/Thermochemical-Nonequilibrium/
4+
---
5+
6+
This page contains a summary of the physical models implemented in the NEMO solvers in SU2 designed ot simulate hypersonic flows in thermochemical nonequilibrium. This includes detials on thermodynamic and chemistry models, as well as transport properties and boundary conditions.
7+
8+
---
9+
10+
- [Thermodynamic Model](#thermodynamic-model)
11+
12+
---
13+
14+
# Thermodynamic Model #
15+
16+
| Solver | Version |
17+
| --- | --- |
18+
| `NEMO_EULER`, `NEMO_NAVIER_STOKES` | 7.0.0 |
19+
20+
A rigid-rotor harmonic oscillator (RRHO) two-temperature model is used to model the thermodynamic state of continuum hypersonic flows. Through the independence of the energy levels, the~total energy and vibrational--electronic energy per unit volume can be expressed as
21+
$$ \rho e = \sum_s \rho_s \left(e_s^{tr} + e_s^{rot} + e_s^{vib} + e_s^{el} + e^{\circ}_s + \frac{1}{2} \bar{v}^{\top} \bar{v}\right),
22+
$$
23+
24+
and
25+
$$
26+
\rho e^{ve} = \sum_s \rho_{s} \left(e_s^{vib} + e_s^{el}\right).
27+
$$
28+
29+
Considering a general gas mixture consisting of polyatomic, monatomic, and free electron species, expressions for the energy stored in the translational, rotational, vibrational, and electronic modes are given as
30+
$$
31+
e^{tr}_s =\begin{cases}
32+
\frac{3}{2} \frac{R}{M_s} T & \text{for monatomic and polyatomic species,}\\
33+
0 & \text{for electrons,}
34+
\end{cases}
35+
$$
36+
\begin{equation}
37+
e^{rot}_s =\begin{cases}
38+
\frac{\xi }{2} \frac{R}{M_s} T & \text{for polyatomic species,}\\
39+
0 & \text{for monatomic species and electrons,}
40+
\end{cases}
41+
\end{equation}
42+
where $\xi$ is an integer specifying the number of axes of rotation,
43+
\begin{equation}
44+
e^{vib}_s =\begin{cases}
45+
\frac{R}{M_s} \frac{\theta^{vib}_s}{exp\left( \theta^{vib}_s / T^{ve}\right) - 1} & \text{for polyatomic species,}\\
46+
0 & \text{for monatomic species and electrons,}
47+
\end{cases}
48+
\end{equation}
49+
where $\theta^{vib}_s$ is the characteristic vibrational temperature of the species, and~\begin{equation}
50+
e^{el}_s =\begin{cases}
51+
\frac{R}{M_s}\frac{\sum_{i=1}^{\infty} g_{i,s}{\theta^{el}_{i,s} exp(-\theta^{el}_{i,s}/T_{ve})}}{\sum_{i=0}^{\infty} g_{i,s} exp(-\theta^{el}_{i,s}/T_{ve})} & \text{for polyatomic and monatomic species,}\\
52+
\frac{3}{2} \frac{R}{M_s} T^{ve} & \text{for electrons,}
53+
\end{cases}
54+
\end{equation}
55+
56+
\noindent where $\theta^{el}_s$ is the characteristic electronic temperature of the species and $g_i$ is the degeneracy of the $i^{th}$ state.
57+
58+
---
59+

0 commit comments

Comments
 (0)