Skip to content

Commit ddd6552

Browse files
committed
finish gy
Signed-off-by: jtneedels <[email protected]>
1 parent 009f0f9 commit ddd6552

File tree

1 file changed

+68
-2
lines changed

1 file changed

+68
-2
lines changed

_docs_v7/Thermochemical-Nonequilibrium.md

Lines changed: 68 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -200,7 +200,7 @@ $$
200200
The effective species diffusion coefficeint is copmuted as a weighted sum of the species binary diffusion coefficients
201201

202202
$$
203-
\frac{(1 - X_i)}{D_i} = \sum_{i\neqj} \frac{X_j}{D_{ij}},
203+
\frac{(1 - X_i)}{D_i} = \sum_{i \neq j} \frac{X_j}{D_{ij}},
204204
$$
205205

206206
where the binary diffusion coefficients are computed as
@@ -223,8 +223,16 @@ The Wilkes-Blottner-Eucken model is generally efective up to temperatures of 10,
223223

224224
Aother model develped by Gupta focuses on the transport properties of weakly ionized flows, and is generally more accurate than the Wilkes-Blottner-Eucken model at temperatures above 10,000 K.
225225

226+
The forumalae for the transport coefficients are dependent on the collision terms
226227

228+
$$
229+
\Delta_{s,r}^{(1)}(T) = \frac{8}{3} \left[ \frac{2M_s M_r}{\pi R T (M_s + M_r)} \right]^{1/2} \pi {\Omega_{s,r}^{(1,1)}}
230+
$$
227231

232+
and
233+
$$
234+
\Delta_{s,r}^{(2)}(T) = \frac{16}{5} \left[ \frac{2M_s M_r}{\pi R T (M_s + M_r)} \right]^{1/2} \pi {\Omega_{s,r}^{(2,2)}}.
235+
$$
228236
The mixutre viscoisty is computed as
229237

230238
$$
@@ -234,6 +242,64 @@ $$
234242
where
235243

236244
$$
237-
\gamma_s = \frac{\rho_s}{\rho M_s}
245+
\gamma_s = \frac{\rho_s}{\rho M_s}.
246+
$$
247+
248+
Thermal conductivity is computed in terms of different energy modes. The contribution due to translation modes is expressed as
249+
250+
$$
251+
\kappa_t = \frac{15}{4} k_{B} \sum_{s \neq e}
252+
\frac{\gamma_s}{\sum_{r \neq e} a_{s,r} \gamma_r \Delta_{s,r}^{(2)}(T_{tr}) + 3.54 \gamma_e \Delta_{s,e}^{(2)}(T_{ve})},
253+
$$
254+
255+
where
256+
257+
$$
258+
a_{s,r} = 1 + \frac{\left[1 - (m_s/m_r) \right] \left[ 0.45 - 2.54(m_s/m_r) \right] }{\left[1 + (m_s/m_r) \right]^2}
259+
$$
260+
261+
and where
262+
263+
$$
264+
m_s = \frac{M_s}{N_{av}}
265+
$$
266+
267+
with $N_{av}$ being Avogadro's Number. The thermal conductivity for the rotational modes is expressed as
268+
269+
$$
270+
\kappa_r = k_{B} \sum_{s \neq e}
271+
\frac{\gamma_s}{\sum_{r \neq e} \gamma_r \Delta_{s,r}^{(1)}(T_{tr}) + \gamma_e \Delta_{s,e}^{(1)}(T_{ve})}.
238272
$$
239273

274+
The mixture translational/rotational thermal conductivity can then be expressed as
275+
276+
$$
277+
\kappa_{tr} = \kappa_t + \kappa_r.
278+
$$
279+
280+
The vibrational/electronic mode thermal conductivity is
281+
282+
$$
283+
\kappa_{ve} = k_{B} \frac{C_{ve}}{R} \sum_{s \in molecules} \frac{\gamma_s}
284+
{\sum_{r \neq e} \gamma_r \Delta_{s,r}^{(1)}(T_{tr}) + \gamma_e \Delta_{s,r}^{(1)}(T_{ve}) }
285+
$$
286+
287+
and the thermal conductivity for electrons is given by
288+
289+
$$
290+
\kappa_e = \frac{15}{4} k_{B} \frac{\gamma_e}{\sum_r 1.45 \gamma_r \Delta_{e,r}^{(2)}(T_{ve})}.
291+
$$
292+
293+
Finally, the binary diffusion coefficient for heavy particles is given by
294+
295+
$$
296+
D_{s,r} = \frac{k_{B} T_{tr}}{p \Delta_{s,r}^{(1)}(T_{tr})},
297+
$$
298+
299+
and for electrons,
300+
301+
$$
302+
D_{e,r} = \frac{k_{B} T_{ve}}{p \Delta_{e,r}^{(1)}(T_{ve})}.
303+
$$
304+
305+
---

0 commit comments

Comments
 (0)