|
| 1 | +"""Covariate-Shift Adaptive Conformal Prediction (CovariateLabel) on TUEV EEG Events using ContraWR. |
| 2 | +
|
| 3 | +This script: |
| 4 | +1) Loads the TUEV dataset and applies the EEGEventsTUEV task. |
| 5 | +2) Splits into train/val/cal/test using split conformal protocol. |
| 6 | +3) Trains a ContraWR model. |
| 7 | +4) Extracts embeddings for calibration and test splits using embed=True. |
| 8 | +5) Calibrates a CovariateLabel prediction-set predictor (KDE-based shift correction). |
| 9 | +6) Evaluates prediction-set coverage/miscoverage and efficiency on the test split. |
| 10 | +
|
| 11 | +Example (from repo root): |
| 12 | + python examples/conformal_eeg/tuev_covariate_shift_conformal.py --root downloads/tuev/v2.0.1/edf |
| 13 | +
|
| 14 | +Notes: |
| 15 | +- CovariateLabel requires access to test embeddings/features to estimate density ratios. |
| 16 | +""" |
| 17 | + |
| 18 | +from __future__ import annotations |
| 19 | + |
| 20 | +import argparse |
| 21 | +import random |
| 22 | +from pathlib import Path |
| 23 | + |
| 24 | +import numpy as np |
| 25 | +import torch |
| 26 | + |
| 27 | +from pyhealth.calib.predictionset.covariate import CovariateLabel |
| 28 | +from pyhealth.calib.utils import extract_embeddings |
| 29 | +from pyhealth.datasets import TUEVDataset, get_dataloader, split_by_sample_conformal |
| 30 | +from pyhealth.models import ContraWR |
| 31 | +from pyhealth.tasks import EEGEventsTUEV |
| 32 | +from pyhealth.trainer import Trainer, get_metrics_fn |
| 33 | + |
| 34 | + |
| 35 | +def parse_args() -> argparse.Namespace: |
| 36 | + parser = argparse.ArgumentParser( |
| 37 | + description="Covariate-shift adaptive conformal prediction (CovariateLabel) on TUEV EEG events using ContraWR." |
| 38 | + ) |
| 39 | + parser.add_argument( |
| 40 | + "--root", |
| 41 | + type=str, |
| 42 | + default="downloads/tuev/v2.0.1/edf", |
| 43 | + help="Path to TUEV edf/ folder.", |
| 44 | + ) |
| 45 | + parser.add_argument("--subset", type=str, default="both", choices=["train", "eval", "both"]) |
| 46 | + parser.add_argument("--seed", type=int, default=42) |
| 47 | + parser.add_argument("--batch-size", type=int, default=32) |
| 48 | + parser.add_argument("--epochs", type=int, default=3) |
| 49 | + parser.add_argument("--alpha", type=float, default=0.1, help="Miscoverage rate (e.g., 0.1 => 90% target coverage).") |
| 50 | + parser.add_argument( |
| 51 | + "--ratios", |
| 52 | + type=float, |
| 53 | + nargs=4, |
| 54 | + default=(0.6, 0.1, 0.15, 0.15), |
| 55 | + metavar=("TRAIN", "VAL", "CAL", "TEST"), |
| 56 | + help="Split ratios for train/val/cal/test. Must sum to 1.0.", |
| 57 | + ) |
| 58 | + parser.add_argument("--n-fft", type=int, default=128, help="STFT FFT size used by ContraWR.") |
| 59 | + parser.add_argument( |
| 60 | + "--device", |
| 61 | + type=str, |
| 62 | + default=None, |
| 63 | + help="Device string, e.g. 'cuda:0' or 'cpu'. Defaults to auto-detect.", |
| 64 | + ) |
| 65 | + return parser.parse_args() |
| 66 | + |
| 67 | + |
| 68 | +def set_seed(seed: int) -> None: |
| 69 | + random.seed(seed) |
| 70 | + np.random.seed(seed) |
| 71 | + torch.manual_seed(seed) |
| 72 | + if torch.cuda.is_available(): |
| 73 | + torch.cuda.manual_seed_all(seed) |
| 74 | + |
| 75 | + |
| 76 | +def main() -> None: |
| 77 | + args = parse_args() |
| 78 | + set_seed(args.seed) |
| 79 | + |
| 80 | + device = args.device or ("cuda:0" if torch.cuda.is_available() else "cpu") |
| 81 | + root = Path(args.root) |
| 82 | + if not root.exists(): |
| 83 | + raise FileNotFoundError( |
| 84 | + f"TUEV root not found: {root}. " |
| 85 | + "Pass --root to point to your downloaded TUEV edf/ directory." |
| 86 | + ) |
| 87 | + |
| 88 | + print("=" * 80) |
| 89 | + print("STEP 1: Load TUEV + build task dataset") |
| 90 | + print("=" * 80) |
| 91 | + dataset = TUEVDataset(root=str(root), subset=args.subset) |
| 92 | + sample_dataset = dataset.set_task(EEGEventsTUEV(), cache_dir="examples/conformal_eeg/cache") |
| 93 | + |
| 94 | + print(f"Task samples: {len(sample_dataset)}") |
| 95 | + print(f"Input schema: {sample_dataset.input_schema}") |
| 96 | + print(f"Output schema: {sample_dataset.output_schema}") |
| 97 | + |
| 98 | + if len(sample_dataset) == 0: |
| 99 | + raise RuntimeError("No samples produced. Verify TUEV root/subset/task.") |
| 100 | + |
| 101 | + print("\n" + "=" * 80) |
| 102 | + print("STEP 2: Split train/val/cal/test") |
| 103 | + print("=" * 80) |
| 104 | + train_ds, val_ds, cal_ds, test_ds = split_by_sample_conformal( |
| 105 | + dataset=sample_dataset, ratios=list(args.ratios), seed=args.seed |
| 106 | + ) |
| 107 | + print(f"Train: {len(train_ds)}") |
| 108 | + print(f"Val: {len(val_ds)}") |
| 109 | + print(f"Cal: {len(cal_ds)}") |
| 110 | + print(f"Test: {len(test_ds)}") |
| 111 | + |
| 112 | + train_loader = get_dataloader(train_ds, batch_size=args.batch_size, shuffle=True) |
| 113 | + val_loader = get_dataloader(val_ds, batch_size=args.batch_size, shuffle=False) if len(val_ds) else None |
| 114 | + test_loader = get_dataloader(test_ds, batch_size=args.batch_size, shuffle=False) |
| 115 | + |
| 116 | + print("\n" + "=" * 80) |
| 117 | + print("STEP 3: Train ContraWR") |
| 118 | + print("=" * 80) |
| 119 | + model = ContraWR(dataset=sample_dataset, n_fft=args.n_fft).to(device) |
| 120 | + trainer = Trainer(model=model, device=device, enable_logging=False) |
| 121 | + |
| 122 | + trainer.train( |
| 123 | + train_dataloader=train_loader, |
| 124 | + val_dataloader=val_loader, |
| 125 | + epochs=args.epochs, |
| 126 | + monitor="accuracy" if val_loader is not None else None, |
| 127 | + ) |
| 128 | + |
| 129 | + print("\nBase model performance on test set:") |
| 130 | + y_true_base, y_prob_base, _loss_base = trainer.inference(test_loader) |
| 131 | + base_metrics = get_metrics_fn("multiclass")(y_true_base, y_prob_base, metrics=["accuracy", "f1_weighted"]) |
| 132 | + for metric, value in base_metrics.items(): |
| 133 | + print(f" {metric}: {value:.4f}") |
| 134 | + |
| 135 | + print("\n" + "=" * 80) |
| 136 | + print("STEP 4: Covariate Shift Adaptive Conformal Prediction (CovariateLabel)") |
| 137 | + print("=" * 80) |
| 138 | + print(f"Target miscoverage alpha: {args.alpha} (target coverage {1 - args.alpha:.0%})") |
| 139 | + |
| 140 | + print("Extracting embeddings for calibration split...") |
| 141 | + cal_embeddings = extract_embeddings(model, cal_ds, batch_size=args.batch_size, device=device) |
| 142 | + print(f" cal_embeddings shape: {cal_embeddings.shape}") |
| 143 | + |
| 144 | + print("Extracting embeddings for test split...") |
| 145 | + test_embeddings = extract_embeddings(model, test_ds, batch_size=args.batch_size, device=device) |
| 146 | + print(f" test_embeddings shape: {test_embeddings.shape}") |
| 147 | + |
| 148 | + cov_predictor = CovariateLabel(model=model, alpha=float(args.alpha)) |
| 149 | + print("Calibrating CovariateLabel predictor (fits KDEs internally)...") |
| 150 | + cov_predictor.calibrate( |
| 151 | + cal_dataset=cal_ds, |
| 152 | + cal_embeddings=cal_embeddings, |
| 153 | + test_embeddings=test_embeddings, |
| 154 | + ) |
| 155 | + |
| 156 | + print("Evaluating CovariateLabel predictor on test set...") |
| 157 | + y_true, y_prob, _loss, extra = Trainer(model=cov_predictor).inference( |
| 158 | + test_loader, additional_outputs=["y_predset"] |
| 159 | + ) |
| 160 | + |
| 161 | + cov_metrics = get_metrics_fn("multiclass")( |
| 162 | + y_true, |
| 163 | + y_prob, |
| 164 | + metrics=["accuracy", "miscoverage_ps"], |
| 165 | + y_predset=extra["y_predset"], |
| 166 | + ) |
| 167 | + |
| 168 | + predset = extra["y_predset"] |
| 169 | + if isinstance(predset, np.ndarray): |
| 170 | + predset_t = torch.tensor(predset) |
| 171 | + else: |
| 172 | + predset_t = predset |
| 173 | + avg_set_size = predset_t.float().sum(dim=1).mean().item() |
| 174 | + |
| 175 | + miscoverage = cov_metrics["miscoverage_ps"] |
| 176 | + if isinstance(miscoverage, np.ndarray): |
| 177 | + miscoverage = float(miscoverage.item() if miscoverage.size == 1 else miscoverage.mean()) |
| 178 | + else: |
| 179 | + miscoverage = float(miscoverage) |
| 180 | + |
| 181 | + print("\nCovariateLabel Results:") |
| 182 | + print(f" Accuracy: {cov_metrics['accuracy']:.4f}") |
| 183 | + print(f" Empirical miscoverage: {miscoverage:.4f}") |
| 184 | + print(f" Empirical coverage: {1 - miscoverage:.4f}") |
| 185 | + print(f" Average set size: {avg_set_size:.2f}") |
| 186 | + |
| 187 | + |
| 188 | +if __name__ == "__main__": |
| 189 | + main() |
0 commit comments