|
| 1 | +"""Benchmarking with TREC runs.""" |
| 2 | + |
| 3 | +import warnings |
| 4 | +from abc import ABC, abstractmethod |
| 5 | +from collections.abc import Generator |
| 6 | +from dataclasses import replace |
| 7 | +from functools import cached_property |
| 8 | +from pathlib import Path |
| 9 | +from typing import Any |
| 10 | + |
| 11 | +from ir_datasets.datasets.base import Dataset |
| 12 | +from ir_measures import ScoredDoc, read_trec_run |
| 13 | +from platformdirs import user_data_dir |
| 14 | +from slugify import slugify |
| 15 | +from tqdm.auto import tqdm |
| 16 | + |
| 17 | +from raglite._config import RAGLiteConfig |
| 18 | + |
| 19 | + |
| 20 | +class IREvaluator(ABC): |
| 21 | + def __init__( |
| 22 | + self, |
| 23 | + dataset: Dataset, |
| 24 | + *, |
| 25 | + num_results: int = 10, |
| 26 | + insert_variant: str | None = None, |
| 27 | + search_variant: str | None = None, |
| 28 | + ) -> None: |
| 29 | + self.dataset = dataset |
| 30 | + self.num_results = num_results |
| 31 | + self.insert_variant = insert_variant |
| 32 | + self.search_variant = search_variant |
| 33 | + self.insert_id = ( |
| 34 | + slugify(self.__class__.__name__.lower().replace("evaluator", "")) |
| 35 | + + (f"_{slugify(insert_variant)}" if insert_variant else "") |
| 36 | + + f"_{slugify(dataset.docs_namespace())}" |
| 37 | + ) |
| 38 | + self.search_id = ( |
| 39 | + self.insert_id |
| 40 | + + f"@{num_results}" |
| 41 | + + (f"_{slugify(search_variant)}" if search_variant else "") |
| 42 | + ) |
| 43 | + self.cwd = Path(user_data_dir("raglite", ensure_exists=True)) |
| 44 | + |
| 45 | + @abstractmethod |
| 46 | + def insert_documents(self, max_workers: int | None = None) -> None: |
| 47 | + """Insert all of the dataset's documents into the search index.""" |
| 48 | + raise NotImplementedError |
| 49 | + |
| 50 | + @abstractmethod |
| 51 | + def search(self, query_id: str, query: str, *, num_results: int = 10) -> list[ScoredDoc]: |
| 52 | + """Search for documents given a query.""" |
| 53 | + raise NotImplementedError |
| 54 | + |
| 55 | + @property |
| 56 | + def trec_run_filename(self) -> str: |
| 57 | + return f"{self.search_id}.trec" |
| 58 | + |
| 59 | + @property |
| 60 | + def trec_run_filepath(self) -> Path: |
| 61 | + return self.cwd / self.trec_run_filename |
| 62 | + |
| 63 | + def score(self) -> Generator[ScoredDoc, None, None]: |
| 64 | + """Read or compute a TREC run.""" |
| 65 | + if self.trec_run_filepath.exists(): |
| 66 | + yield from read_trec_run(self.trec_run_filepath.as_posix()) # type: ignore[no-untyped-call] |
| 67 | + return |
| 68 | + if not self.search("q0", next(self.dataset.queries_iter()).text): |
| 69 | + self.insert_documents() |
| 70 | + with self.trec_run_filepath.open(mode="w") as trec_run_file: |
| 71 | + for query in tqdm( |
| 72 | + self.dataset.queries_iter(), |
| 73 | + total=self.dataset.queries_count(), |
| 74 | + desc="Running queries", |
| 75 | + unit="query", |
| 76 | + dynamic_ncols=True, |
| 77 | + ): |
| 78 | + results = self.search(query.query_id, query.text, num_results=self.num_results) |
| 79 | + unique_results = {doc.doc_id: doc for doc in sorted(results, key=lambda d: d.score)} |
| 80 | + top_results = sorted(unique_results.values(), key=lambda d: d.score, reverse=True) |
| 81 | + top_results = top_results[: self.num_results] |
| 82 | + for rank, scored_doc in enumerate(top_results): |
| 83 | + trec_line = f"{query.query_id} 0 {scored_doc.doc_id} {rank} {scored_doc.score} {self.trec_run_filename}\n" |
| 84 | + trec_run_file.write(trec_line) |
| 85 | + yield scored_doc |
| 86 | + |
| 87 | + |
| 88 | +class RAGLiteEvaluator(IREvaluator): |
| 89 | + def __init__( |
| 90 | + self, |
| 91 | + dataset: Dataset, |
| 92 | + *, |
| 93 | + num_results: int = 10, |
| 94 | + insert_variant: str | None = None, |
| 95 | + search_variant: str | None = None, |
| 96 | + config: RAGLiteConfig | None = None, |
| 97 | + ): |
| 98 | + super().__init__( |
| 99 | + dataset, |
| 100 | + num_results=num_results, |
| 101 | + insert_variant=insert_variant, |
| 102 | + search_variant=search_variant, |
| 103 | + ) |
| 104 | + self.db_filepath = self.cwd / f"{self.insert_id}.db" |
| 105 | + db_url = f"duckdb:///{self.db_filepath.as_posix()}" |
| 106 | + self.config = replace(config or RAGLiteConfig(), db_url=db_url) |
| 107 | + |
| 108 | + def insert_documents(self, max_workers: int | None = None) -> None: |
| 109 | + from raglite import Document, insert_documents |
| 110 | + |
| 111 | + documents = [ |
| 112 | + Document.from_text(doc.text, id=doc.doc_id) for doc in self.dataset.docs_iter() |
| 113 | + ] |
| 114 | + insert_documents(documents, max_workers=max_workers, config=self.config) |
| 115 | + |
| 116 | + def update_query_adapter(self, num_evals: int = 1024) -> None: |
| 117 | + from raglite import insert_evals, update_query_adapter |
| 118 | + from raglite._database import IndexMetadata |
| 119 | + |
| 120 | + if ( |
| 121 | + self.config.vector_search_query_adapter |
| 122 | + and IndexMetadata.get(config=self.config).get("query_adapter") is None |
| 123 | + ): |
| 124 | + insert_evals(num_evals=num_evals, config=self.config) |
| 125 | + update_query_adapter(config=self.config) |
| 126 | + |
| 127 | + def search(self, query_id: str, query: str, *, num_results: int = 10) -> list[ScoredDoc]: |
| 128 | + from raglite import retrieve_chunks, vector_search |
| 129 | + |
| 130 | + self.update_query_adapter() |
| 131 | + chunk_ids, scores = vector_search(query, num_results=2 * num_results, config=self.config) |
| 132 | + chunks = retrieve_chunks(chunk_ids, config=self.config) |
| 133 | + scored_docs = [ |
| 134 | + ScoredDoc(query_id=query_id, doc_id=chunk.document.id, score=score) |
| 135 | + for chunk, score in zip(chunks, scores, strict=True) |
| 136 | + ] |
| 137 | + return scored_docs |
| 138 | + |
| 139 | + |
| 140 | +class LlamaIndexEvaluator(IREvaluator): |
| 141 | + def __init__( |
| 142 | + self, |
| 143 | + dataset: Dataset, |
| 144 | + *, |
| 145 | + num_results: int = 10, |
| 146 | + insert_variant: str | None = None, |
| 147 | + search_variant: str | None = None, |
| 148 | + ): |
| 149 | + super().__init__( |
| 150 | + dataset, |
| 151 | + num_results=num_results, |
| 152 | + insert_variant=insert_variant, |
| 153 | + search_variant=search_variant, |
| 154 | + ) |
| 155 | + self.embedder = "text-embedding-3-large" |
| 156 | + self.embedder_dim = 3072 |
| 157 | + self.persist_path = self.cwd / self.insert_id |
| 158 | + |
| 159 | + def insert_documents(self, max_workers: int | None = None) -> None: |
| 160 | + # Adapted from https://docs.llamaindex.ai/en/stable/examples/vector_stores/FaissIndexDemo/. |
| 161 | + import faiss |
| 162 | + from llama_index.core import Document, StorageContext, VectorStoreIndex |
| 163 | + from llama_index.embeddings.openai import OpenAIEmbedding |
| 164 | + from llama_index.vector_stores.faiss import FaissVectorStore |
| 165 | + |
| 166 | + self.persist_path.mkdir(parents=True, exist_ok=True) |
| 167 | + faiss_index = faiss.IndexHNSWFlat(self.embedder_dim, 32, faiss.METRIC_INNER_PRODUCT) |
| 168 | + vector_store = FaissVectorStore(faiss_index=faiss_index) |
| 169 | + index = VectorStoreIndex.from_documents( |
| 170 | + [ |
| 171 | + Document(id_=doc.doc_id, text=doc.text, metadata={"filename": doc.doc_id}) |
| 172 | + for doc in self.dataset.docs_iter() |
| 173 | + ], |
| 174 | + storage_context=StorageContext.from_defaults(vector_store=vector_store), |
| 175 | + embed_model=OpenAIEmbedding(model=self.embedder, dimensions=self.embedder_dim), |
| 176 | + show_progress=True, |
| 177 | + ) |
| 178 | + index.storage_context.persist(persist_dir=self.persist_path) |
| 179 | + |
| 180 | + @cached_property |
| 181 | + def index(self) -> Any: |
| 182 | + from llama_index.core import StorageContext, load_index_from_storage |
| 183 | + from llama_index.embeddings.openai import OpenAIEmbedding |
| 184 | + from llama_index.vector_stores.faiss import FaissVectorStore |
| 185 | + |
| 186 | + vector_store = FaissVectorStore.from_persist_dir(persist_dir=self.persist_path.as_posix()) |
| 187 | + storage_context = StorageContext.from_defaults( |
| 188 | + vector_store=vector_store, persist_dir=self.persist_path.as_posix() |
| 189 | + ) |
| 190 | + embed_model = OpenAIEmbedding(model=self.embedder, dimensions=self.embedder_dim) |
| 191 | + index = load_index_from_storage(storage_context, embed_model=embed_model) |
| 192 | + return index |
| 193 | + |
| 194 | + def search(self, query_id: str, query: str, *, num_results: int = 10) -> list[ScoredDoc]: |
| 195 | + if not self.persist_path.exists(): |
| 196 | + self.insert_documents() |
| 197 | + retriever = self.index.as_retriever(similarity_top_k=2 * num_results) |
| 198 | + nodes = retriever.retrieve(query) |
| 199 | + scored_docs = [ |
| 200 | + ScoredDoc( |
| 201 | + query_id=query_id, |
| 202 | + doc_id=node.metadata.get("filename", node.id_), |
| 203 | + score=node.score if node.score is not None else 1.0, |
| 204 | + ) |
| 205 | + for node in nodes |
| 206 | + ] |
| 207 | + return scored_docs |
| 208 | + |
| 209 | + |
| 210 | +class OpenAIVectorStoreEvaluator(IREvaluator): |
| 211 | + def __init__( |
| 212 | + self, |
| 213 | + dataset: Dataset, |
| 214 | + *, |
| 215 | + num_results: int = 10, |
| 216 | + insert_variant: str | None = None, |
| 217 | + search_variant: str | None = None, |
| 218 | + ): |
| 219 | + super().__init__( |
| 220 | + dataset, |
| 221 | + num_results=num_results, |
| 222 | + insert_variant=insert_variant, |
| 223 | + search_variant=search_variant, |
| 224 | + ) |
| 225 | + self.vector_store_name = dataset.docs_namespace() + ( |
| 226 | + f"_{slugify(insert_variant)}" if insert_variant else "" |
| 227 | + ) |
| 228 | + |
| 229 | + @cached_property |
| 230 | + def client(self) -> Any: |
| 231 | + import openai |
| 232 | + |
| 233 | + return openai.OpenAI() |
| 234 | + |
| 235 | + @property |
| 236 | + def vector_store_id(self) -> str | None: |
| 237 | + vector_stores = self.client.vector_stores.list() |
| 238 | + vector_store = next((vs for vs in vector_stores if vs.name == self.vector_store_name), None) |
| 239 | + if vector_store is None: |
| 240 | + return None |
| 241 | + if vector_store.file_counts.failed > 0: |
| 242 | + warnings.warn( |
| 243 | + f"Vector store {vector_store.name} has {vector_store.file_counts.failed} failed files.", |
| 244 | + stacklevel=2, |
| 245 | + ) |
| 246 | + if vector_store.file_counts.in_progress > 0: |
| 247 | + error_message = f"Vector store {vector_store.name} has {vector_store.file_counts.in_progress} files in progress." |
| 248 | + raise RuntimeError(error_message) |
| 249 | + return vector_store.id # type: ignore[no-any-return] |
| 250 | + |
| 251 | + def insert_documents(self, max_workers: int | None = None) -> None: |
| 252 | + import tempfile |
| 253 | + from pathlib import Path |
| 254 | + |
| 255 | + vector_store = self.client.vector_stores.create(name=self.vector_store_name) |
| 256 | + files, max_files_per_batch = [], 32 |
| 257 | + with tempfile.TemporaryDirectory() as temp_dir: |
| 258 | + for i, doc in tqdm( |
| 259 | + enumerate(self.dataset.docs_iter()), |
| 260 | + total=self.dataset.docs_count(), |
| 261 | + desc="Inserting documents", |
| 262 | + unit="document", |
| 263 | + dynamic_ncols=True, |
| 264 | + ): |
| 265 | + if not doc.text.strip(): |
| 266 | + continue |
| 267 | + temp_file = Path(temp_dir) / f"{slugify(doc.doc_id)}.txt" |
| 268 | + temp_file.write_text(doc.text) |
| 269 | + files.append(temp_file.open("rb")) |
| 270 | + if len(files) == max_files_per_batch or (i == self.dataset.docs_count() - 1): |
| 271 | + self.client.vector_stores.file_batches.upload_and_poll( |
| 272 | + vector_store_id=vector_store.id, files=files, max_concurrency=max_workers |
| 273 | + ) |
| 274 | + for f in files: |
| 275 | + f.close() |
| 276 | + files = [] |
| 277 | + |
| 278 | + @cached_property |
| 279 | + def filename_to_doc_id(self) -> dict[str, str]: |
| 280 | + return {f"{slugify(doc.doc_id)}.txt": doc.doc_id for doc in self.dataset.docs_iter()} |
| 281 | + |
| 282 | + def search(self, query_id: str, query: str, *, num_results: int = 10) -> list[ScoredDoc]: |
| 283 | + if not self.vector_store_id: |
| 284 | + return [] |
| 285 | + response = self.client.vector_stores.search( |
| 286 | + vector_store_id=self.vector_store_id, query=query, max_num_results=2 * num_results |
| 287 | + ) |
| 288 | + scored_docs = [ |
| 289 | + ScoredDoc( |
| 290 | + query_id=query_id, |
| 291 | + doc_id=self.filename_to_doc_id[result.filename], |
| 292 | + score=result.score, |
| 293 | + ) |
| 294 | + for result in response |
| 295 | + ] |
| 296 | + return scored_docs |
0 commit comments