Skip to content

Commit 4bdcc9c

Browse files
author
Sunil Thaha
authored
Merge pull request #321 from sthaha/upgrade-deps-no-sys-change
chore(pyproject): upgrade dependencies
2 parents 63b89d9 + 100aba0 commit 4bdcc9c

File tree

8 files changed

+22
-18
lines changed

8 files changed

+22
-18
lines changed

cmd/main.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -545,7 +545,7 @@ def estimate(args):
545545
for energy_component, _ in predicted_power_map.items():
546546
predicted_power_colname = default_predicted_col_func(energy_component)
547547
label_power_columns = [col for col in power_labels if energy_component in col and col != predicted_power_colname]
548-
sum_power_label = data.groupby([TIMESTAMP_COL]).mean()[label_power_columns].sum(axis=1).sort_index()
548+
sum_power_label = data.groupby([TIMESTAMP_COL])[label_power_columns].mean().sum(axis=1).sort_index()
549549
sum_predicted_power = data_with_prediction.groupby([TIMESTAMP_COL]).sum().sort_index()[predicted_power_colname]
550550
mae, mse, mape = compute_error(sum_power_label, sum_predicted_power)
551551
summary_item = dict()
@@ -668,7 +668,7 @@ def plot(args):
668668
subtitles += [energy_component]
669669
predicted_power_colname = default_predicted_col_func(energy_component)
670670
label_power_columns = [col for col in power_labels if energy_component in col and col != predicted_power_colname]
671-
data[energy_component] = best_restult.groupby([TIMESTAMP_COL]).mean()[label_power_columns].sum(axis=1).sort_index()
671+
data[energy_component] = best_restult.groupby([TIMESTAMP_COL])[label_power_columns].mean().sum(axis=1).sort_index()
672672
data[predicted_power_colname] = best_restult.groupby([TIMESTAMP_COL]).sum().sort_index()[predicted_power_colname]
673673
cols += [[energy_component, predicted_power_colname]]
674674
actual_power_cols += [energy_component]

pyproject.toml

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -25,21 +25,21 @@ classifiers = [
2525
"Programming Language :: Python :: 3.10",
2626
]
2727
dependencies = [
28-
"flask==2.1.2",
28+
"flask==3.0.3",
2929
"joblib==1.4.2",
30-
"numpy==1.22.4",
31-
"pandas==1.4.4",
30+
"numpy==2.0.1",
31+
"pandas==2.2.2",
3232
"prometheus-api-client==0.5.5",
3333
"prometheus-client==0.20.0",
34-
"protobuf==3.19.4",
34+
"protobuf==5.27.2",
3535
"psutil==6.0.0",
3636
"py-cpuinfo==9.0.0",
3737
"pyudev==0.24.3",
3838
"pyyaml_env_tag==0.1",
3939
"scikit-learn==1.5.1",
40-
"scipy==1.9.1",
40+
"scipy==1.14.0",
4141
"seaborn==0.13.2",
42-
"Werkzeug==2.2.2",
42+
"Werkzeug==3.0.3",
4343
"xgboost==2.1.0",
4444
]
4545

src/train/extractor/extractor.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -103,8 +103,8 @@ def extract(self, query_results, energy_components, feature_group, energy_source
103103
is_aggr = node_level and aggr
104104
if is_aggr:
105105
# sum stat of all containers
106-
sum_feature = feature_power_data.groupby([TIMESTAMP_COL]).sum()[workload_features]
107-
mean_power = feature_power_data.groupby([TIMESTAMP_COL]).mean()[power_columns]
106+
sum_feature = feature_power_data.groupby([TIMESTAMP_COL])[workload_features].sum()
107+
mean_power = feature_power_data.groupby([TIMESTAMP_COL])[power_columns].mean()
108108
feature_power_data = sum_feature.join(mean_power)
109109
else:
110110
feature_power_data = feature_power_data.groupby([TIMESTAMP_COL, container_id_colname]).sum()

src/train/extractor/preprocess.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -43,9 +43,10 @@ def get_extracted_power_labels(extracted_data, energy_components, label_cols):
4343
extracted_power_labels[component_label_col] = extracted_power_labels[target_cols].sum(axis=1)
4444
return extracted_power_labels
4545

46+
4647
def find_correlations(energy_source, feature_power_data, power_columns, workload_features):
47-
power_data = feature_power_data[power_columns].reset_index().groupby([TIMESTAMP_COL]).mean()
48-
feature_data = feature_power_data[workload_features].reset_index().groupby([TIMESTAMP_COL]).sum()
48+
power_data = feature_power_data.reset_index().groupby([TIMESTAMP_COL])[power_columns].mean()
49+
feature_data = feature_power_data.reset_index().groupby([TIMESTAMP_COL])[workload_features].sum()
4950
energy_components = PowerSourceMap[energy_source]
5051
target_cols = [col for col in power_columns if col_to_component(col) == energy_components[0]]
5152
process_power_data = power_data.copy()

src/train/isolator/isolator.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ def squeeze_data(container_level_data, label_cols):
7676
groupped_sum_data[ratio_col] /= groupped_sum_data['sum_ratio']
7777
groupped_sum_data = groupped_sum_data.drop(columns=['sum_ratio'])
7878
# use mean value for node-level information
79-
groupped_mean_data = container_level_data.groupby([TIMESTAMP_COL]).mean()[node_level_columns]
79+
groupped_mean_data = container_level_data.groupby([TIMESTAMP_COL])[node_level_columns].mean()
8080
squeeze_data = groupped_sum_data.join(groupped_mean_data)
8181
squeeze_data[container_id_colname] = all_container_key
8282
return squeeze_data.reset_index()

src/util/loader.py

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -266,8 +266,8 @@ def get_metadata_df(model_toppath, model_type, fg, energy_source, pipeline_name)
266266
group_path = get_model_group_path(model_toppath, output_type=ModelOutputType[model_type], feature_group=FeatureGroup[fg], energy_source=energy_source, pipeline_name=pipeline_name, assure=False)
267267
metadata_df = _get_metadata_df(group_path)
268268
if len(metadata_df) > 0:
269-
metadata_df[['trainer', 'node_type']] = metadata_df['model_name'].str.split('_', 1, expand=True)
270-
metadata_df['node_type'] = metadata_df['node_type'].astype(int)
269+
metadata_df[["trainer", "node_type"]] = metadata_df["model_name"].str.split("_", n=1, expand=True)
270+
metadata_df["node_type"] = metadata_df["node_type"].astype(int)
271271
return metadata_df, group_path
272272

273273
def get_all_metadata(model_toppath, pipeline_name, clean_empty=False):
@@ -326,16 +326,19 @@ def get_export_path(output_path, pipeline_name, assure=True):
326326
return assure_path(export_path)
327327
return export_path
328328

329+
329330
def get_preprocess_folder(pipeline_path, assure=True):
330331
preprocess_folder = os.path.join(pipeline_path, PREPROCESS_FOLDERNAME)
331332
if assure:
332333
return assure_path(preprocess_folder)
333334
return preprocess_folder
334335

336+
335337
def get_general_filename(prefix, energy_source, fg, ot, extractor, isolator=None):
336338
fg_suffix = "" if fg is None else "_" + fg.name
337339
if ot.name == ModelOutputType.DynPower.name:
338340
return "{}_dyn_{}_{}_{}{}".format(prefix, extractor, isolator, energy_source, fg_suffix)
339341
if ot.name == ModelOutputType.AbsPower.name:
340342
return "{}_abs_{}_{}{}".format(prefix, extractor, energy_source, fg_suffix)
341-
return None
343+
return None
344+

tests/estimator_model_test.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ def test_model(group_path, model_name, test_data_with_label, power_columns, powe
3333
for energy_component, _ in predicted_power_map.items():
3434
label_power_columns = [col for col in power_columns if energy_component in col]
3535
predicted_power_colname = default_predicted_col_func(energy_component)
36-
sum_power_label = test_data_with_label.groupby([TIMESTAMP_COL]).mean()[label_power_columns].sum(axis=1).sort_index()
36+
sum_power_label = test_data_with_label.groupby([TIMESTAMP_COL])[label_power_columns].mean().sum(axis=1).sort_index()[label_power_columns].sum(axis=1).sort_index()
3737
sum_predicted_power = data_with_prediction.groupby([TIMESTAMP_COL]).sum().sort_index()[predicted_power_colname]
3838
mae, mse, mape = compute_error(sum_power_label, sum_predicted_power)
3939
if power_range is None:

tests/model_tester.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ def process(train_dataset_name, test_dataset_name, target_path):
106106
label_power_columns = [col for col in power_columns if energy_component in col]
107107
# sum label value for all unit
108108
# mean to squeeze value of power back
109-
sum_power_label = predicted_data.groupby([TIMESTAMP_COL]).mean()[label_power_columns].sum(axis=1).sort_index()
109+
sum_power_label = predicted_data.groupby([TIMESTAMP_COL])[label_power_columns].mean().sum(axis=1).sort_index()
110110
# append predicted value to data_with_prediction
111111

112112
# TO-DO: use predict_and_sort in train_isolator.py

0 commit comments

Comments
 (0)