@@ -148,4 +148,40 @@ where the maxima are a bit less regular, but the minima are consistently zero.
148148>
149149> Then use pyplot to generate average, max, and min for all patients.
150150>
151+ > > ## Solution
152+ > > ~~~
153+ > > import glob
154+ > > import numpy
155+ > > import matplotlib.pyplot
156+ > >
157+ > > filenames = glob.glob('data/inflammation*.csv')
158+ > > composite_data = numpy.zeros((60,40))
159+ > >
160+ > > for f in filenames:
161+ > > data = numpy.loadtxt(fname = f, delimiter=',')
162+ > > composite_data += data
163+ > >
164+ > > composite_data/=len(filenames)
165+ > >
166+ > > fig = matplotlib.pyplot.figure(figsize=(10.0, 3.0))
167+ > >
168+ > > axes1 = fig.add_subplot(1, 3, 1)
169+ > > axes2 = fig.add_subplot(1, 3, 2)
170+ > > axes3 = fig.add_subplot(1, 3, 3)
171+ > >
172+ > > axes1.set_ylabel('average')
173+ > > axes1.plot(numpy.mean(composite_data, axis=0))
174+ > >
175+ > > axes2.set_ylabel('max')
176+ > > axes2.plot(numpy.max(composite_data, axis=0))
177+ > >
178+ > > axes3.set_ylabel('min')
179+ > > axes3.plot(numpy.min(composite_data, axis=0))
180+ > >
181+ > > fig.tight_layout()
182+ > >
183+ > > matplotlib.pyplot.show()
184+ > > ~~~
185+ > > {: .python}
186+ >{: .solution}
151187{: .challenge}
0 commit comments