|
| 1 | +//===--- AddressLowering.h - Lower SIL address-only types. ----------------===// |
| 2 | +// |
| 3 | +// This source file is part of the Swift.org open source project |
| 4 | +// |
| 5 | +// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors |
| 6 | +// Licensed under Apache License v2.0 with Runtime Library Exception |
| 7 | +// |
| 8 | +// See https://swift.org/LICENSE.txt for license information |
| 9 | +// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors |
| 10 | +// |
| 11 | +//===----------------------------------------------------------------------===// |
| 12 | + |
| 13 | +#include "swift/SIL/SILArgument.h" |
| 14 | +#include "swift/SIL/SILInstruction.h" |
| 15 | +#include "swift/SIL/SILValue.h" |
| 16 | +#include "llvm/ADT/DenseMap.h" |
| 17 | + |
| 18 | +namespace swift { |
| 19 | + |
| 20 | +/// Track a value's storage. Stages in the storage life-cycle: |
| 21 | +/// |
| 22 | +/// 1. Unallocated |
| 23 | +/// |
| 24 | +/// 2. Allocated. Either (a) 'storageAddress' is an alloc_stack, or (b) |
| 25 | +/// 'projectedStorageID' refers to a different ValueStorage, which recursively |
| 26 | +/// leads to a valid 'storageAddress'. |
| 27 | +/// |
| 28 | +/// 3. Materialized. 'storageAddress' is valid. Address projections have been |
| 29 | +/// emitted at the point that this value is defined. |
| 30 | +/// |
| 31 | +/// 4. Rewritten. The definition of this address-only value is fully translated |
| 32 | +/// into lowered SIL. Instructions are typically materialized and rewritten at |
| 33 | +/// the same time. A indirect result, however, is materialized as soon as its |
| 34 | +/// alloc_stack is emitted, but only rewritten once the call itself is |
| 35 | +/// rewritten. |
| 36 | +/// |
| 37 | +/// A projection may project out of an operand's definition (def-projection). |
| 38 | +/// After allocation, before materialization or rewriting, we may have: |
| 39 | +/// |
| 40 | +/// %result_addr = alloc_stack // storage for %result |
| 41 | +/// %result = apply () -> @out T |
| 42 | +/// %extract = struct_extact %result // def-projection of %result |
| 43 | +/// |
| 44 | +/// Or, a projection may project into a composing use (use-projection): |
| 45 | +/// |
| 46 | +/// %struct_addr = alloc_stack // storage for %struct |
| 47 | +/// %result = apply () -> @out T // use-projection of %struct at operand #0 |
| 48 | +/// %struct = struct %result |
| 49 | +/// |
| 50 | +/// A phi-projection is a use projection that projects its entire value |
| 51 | +/// through a phi rather than into a composing use. It has an invalid |
| 52 | +/// 'projectedOperandNum'. |
| 53 | +/// |
| 54 | +/// Operations that destructively resuse storage (open_existential_value, |
| 55 | +/// unchecked_enum_data, and switch_enum), are not considered storage |
| 56 | +/// projections. Instead, these values have no ValueStorage but are rewritten to |
| 57 | +/// directly reuse their operand's storage. |
| 58 | +/// |
| 59 | +/// To materialize projections, address lowering follows the original def-use |
| 60 | +/// edges for address-only values. Consequently, values that have storage cannot |
| 61 | +/// be removed from SIL or from the storage map until rewriting is |
| 62 | +/// complete. Mapped values can, however, be substituted on-the-fly by emitting |
| 63 | +/// a place-holder value and updating the map entry. This works because the |
| 64 | +/// value storage map holds no direct references to any SIL entities, such as |
| 65 | +/// Operands or SILValues. |
| 66 | +struct ValueStorage { |
| 67 | + enum : uint32_t { InvalidID = uint32_t(~0) }; |
| 68 | + enum : uint16_t { InvalidOper = uint16_t(~0) }; |
| 69 | + |
| 70 | + /// The final address of this storage after rewriting the SIL. For values |
| 71 | + /// linked to their own storage, this is set during storage allocation to an |
| 72 | + /// alloc_stack or indirect function argument. For projections, it is only set |
| 73 | + /// after materialization (during instruction rewriting). |
| 74 | + SILValue storageAddress; |
| 75 | + |
| 76 | + /// When either isDefProjection or isUseProjection is set, this refers to the |
| 77 | + /// storage whose "def" this value projects out of or whose operand this |
| 78 | + /// storage projects into via its "use. |
| 79 | + uint32_t projectedStorageID; |
| 80 | + |
| 81 | + /// For use-projections, identifies the operand index of the composing use. |
| 82 | + /// Only valid for non-phi use projections. |
| 83 | + uint16_t projectedOperandNum; |
| 84 | + |
| 85 | + /// Projection out of a storage def. e.g. this value is a destructure. |
| 86 | + unsigned isDefProjection : 1; |
| 87 | + |
| 88 | + /// Projection into a composing use or phi. e.g. this value is used by a |
| 89 | + /// struct, tuple, enum, or branch. |
| 90 | + unsigned isUseProjection : 1; |
| 91 | + |
| 92 | + // The definition of this value is fully translated to lowered SIL. |
| 93 | + unsigned isRewritten : 1; |
| 94 | + |
| 95 | + // This is a use-projection into an enum. Tracked to avoid projecting enums |
| 96 | + // across phis, which would result in piecewise initialization. |
| 97 | + unsigned initializesEnum : 1; |
| 98 | + |
| 99 | + ValueStorage() { clear(); } |
| 100 | + |
| 101 | + void clear() { |
| 102 | + storageAddress = SILValue(); |
| 103 | + projectedStorageID = InvalidID; |
| 104 | + projectedOperandNum = InvalidOper; |
| 105 | + isUseProjection = false; |
| 106 | + isDefProjection = false; |
| 107 | + isRewritten = false; |
| 108 | + initializesEnum = false; |
| 109 | + } |
| 110 | + |
| 111 | + bool isAllocated() const { |
| 112 | + return storageAddress || isUseProjection || isDefProjection; |
| 113 | + } |
| 114 | + |
| 115 | + bool isProjection() const { return isUseProjection || isDefProjection; } |
| 116 | + |
| 117 | + bool isPhiProjection() const { |
| 118 | + return isUseProjection && projectedOperandNum == InvalidOper; |
| 119 | + } |
| 120 | + |
| 121 | + bool isComposingUseProjection() const { |
| 122 | + return isUseProjection && projectedOperandNum != InvalidOper; |
| 123 | + } |
| 124 | + |
| 125 | + void markRewritten() { |
| 126 | + assert(storageAddress); |
| 127 | + isRewritten = true; |
| 128 | + } |
| 129 | + |
| 130 | + SILValue getMaterializedAddress() const { |
| 131 | + assert(isRewritten && "storage has not been materialized"); |
| 132 | + return storageAddress; |
| 133 | + } |
| 134 | +}; |
| 135 | + |
| 136 | +/// Map each opaque/resilient SILValue to its abstract storage. |
| 137 | +/// Iteration guarantees RPO order. |
| 138 | +/// |
| 139 | +/// Mapped values are expected to be created in a single RPO pass. "erase" is |
| 140 | +/// unsupported. Values must be replaced using 'replaceValue()'. |
| 141 | +class ValueStorageMap { |
| 142 | + struct ValueStoragePair { |
| 143 | + SILValue value; |
| 144 | + ValueStorage storage; |
| 145 | + ValueStoragePair(SILValue v, ValueStorage s) : value(v), storage(s) {} |
| 146 | + }; |
| 147 | + typedef std::vector<ValueStoragePair> ValueVector; |
| 148 | + // Hash of values to ValueVector indices. |
| 149 | + typedef llvm::DenseMap<SILValue, unsigned> ValueHashMap; |
| 150 | + |
| 151 | + ValueVector valueVector; |
| 152 | + ValueHashMap valueHashMap; |
| 153 | + |
| 154 | + // True after valueVector is done growing, so ValueStorage references will no |
| 155 | + // longer be invalidated. |
| 156 | + SWIFT_ASSERT_ONLY_DECL(bool stableStorage = false); |
| 157 | + |
| 158 | +public: |
| 159 | + bool empty() const { return valueVector.empty(); } |
| 160 | + |
| 161 | + void clear() { |
| 162 | + valueVector.clear(); |
| 163 | + valueHashMap.clear(); |
| 164 | + } |
| 165 | + |
| 166 | + /// Iterate over value storage in RPO order. Once we begin erasing |
| 167 | + /// instructions, some entries could become invalid. ValueStorage validity can |
| 168 | + /// be checked with valueStorageMap.contains(value). |
| 169 | + ValueVector::iterator begin() { return valueVector.begin(); } |
| 170 | + |
| 171 | + ValueVector::iterator end() { return valueVector.end(); } |
| 172 | + |
| 173 | + ValueVector::reverse_iterator rbegin() { return valueVector.rbegin(); } |
| 174 | + |
| 175 | + ValueVector::reverse_iterator rend() { return valueVector.rend(); } |
| 176 | + |
| 177 | + bool contains(SILValue value) const { |
| 178 | + return valueHashMap.find(value) != valueHashMap.end(); |
| 179 | + } |
| 180 | + |
| 181 | + unsigned getOrdinal(SILValue value) const { |
| 182 | + auto hashIter = valueHashMap.find(value); |
| 183 | + assert(hashIter != valueHashMap.end() && "Missing SILValue"); |
| 184 | + return hashIter->second; |
| 185 | + } |
| 186 | + |
| 187 | + ValueStorage &getStorage(SILValue value) { |
| 188 | + return valueVector[getOrdinal(value)].storage; |
| 189 | + } |
| 190 | + const ValueStorage &getStorage(SILValue value) const { |
| 191 | + return valueVector[getOrdinal(value)].storage; |
| 192 | + } |
| 193 | + |
| 194 | + const ValueStorage *getStorageOrNull(SILValue value) const { |
| 195 | + auto iter = valueHashMap.find(value); |
| 196 | + if (iter == valueHashMap.end()) |
| 197 | + return nullptr; |
| 198 | + |
| 199 | + return &valueVector[iter->second].storage; |
| 200 | + } |
| 201 | + |
| 202 | + void setStable() { SWIFT_ASSERT_ONLY(stableStorage = true); } |
| 203 | + |
| 204 | + /// Given storage for a projection, return the projected storage by following |
| 205 | + /// single level of projected storage. The returned storage may |
| 206 | + /// recursively be a another projection. |
| 207 | + ValueStoragePair &getProjectedStorage(const ValueStorage &storage) { |
| 208 | + assert(storage.isProjection()); |
| 209 | + return valueVector[storage.projectedStorageID]; |
| 210 | + } |
| 211 | + |
| 212 | + /// Return the non-projection storage that the given storage ultimately refers |
| 213 | + /// to by following all projections. After allocation, this storage always has |
| 214 | + /// a valid address. |
| 215 | + const ValueStorage &getBaseStorage(const ValueStorage &storage) { |
| 216 | + if (storage.isDefProjection || storage.isUseProjection) |
| 217 | + return getBaseStorage(getProjectedStorage(storage).storage); |
| 218 | + |
| 219 | + return storage; |
| 220 | + } |
| 221 | + |
| 222 | + /// Return the non-projection storage that the given storage ultimately refers |
| 223 | + /// to by following all projections. |
| 224 | + const ValueStorage &getBaseStorage(SILValue value) { |
| 225 | + return getBaseStorage(getStorage(value)); |
| 226 | + } |
| 227 | + |
| 228 | + /// Return the non-projection storage that this storage refers to. If this |
| 229 | + /// storage holds an Enum or any intermediate storage that projects into this |
| 230 | + /// storage holds an Enum, then return nullptr. |
| 231 | + const ValueStorage *getNonEnumBaseStorage(const ValueStorage &storage) { |
| 232 | + if (storage.initializesEnum) |
| 233 | + return nullptr; |
| 234 | + |
| 235 | + if (storage.isUseProjection) { |
| 236 | + auto &storageAndValue = getProjectedStorage(storage); |
| 237 | + return getNonEnumBaseStorage(storageAndValue.storage); |
| 238 | + } |
| 239 | + assert(!storage.isDefProjection && "def projections should not reach here"); |
| 240 | + return &storage; |
| 241 | + } |
| 242 | + |
| 243 | + /// Return the non-projection storage that this storage refers to, or nullptr |
| 244 | + /// if \p allowInitEnum is true and the storage initializes an Enum. |
| 245 | + const ValueStorage *getBaseStorage(SILValue value, bool allowInitEnum) { |
| 246 | + if (allowInitEnum) |
| 247 | + return &getBaseStorage(value); |
| 248 | + |
| 249 | + return getNonEnumBaseStorage(getStorage(value)); |
| 250 | + } |
| 251 | + |
| 252 | + /// Insert a value in the map, creating a ValueStorage object for it. This |
| 253 | + /// must be called in RPO order. |
| 254 | + ValueStorage &insertValue(SILValue value); |
| 255 | + |
| 256 | + /// Replace a value that is mapped to storage with another value. This allows |
| 257 | + /// limited rewritting of original address-only values. For example, block |
| 258 | + /// arguments can be replaced with fake loads in order to rewrite their |
| 259 | + /// corresponding terminator. |
| 260 | + void replaceValue(SILValue oldValue, SILValue newValue); |
| 261 | + |
| 262 | + /// Record a storage projection from the source of the given operand into its |
| 263 | + /// use (e.g. struct_extract, tuple_extract, switch_enum). |
| 264 | + void recordDefProjection(Operand *oper, SILValue projectedValue); |
| 265 | + |
| 266 | + /// Record a storage projection from the use of the given operand into the |
| 267 | + /// operand's source. (e.g. Any value used by a struct, tuple, or enum may |
| 268 | + /// project storage into its use). |
| 269 | + void recordComposingUseProjection(Operand *oper, SILValue userValue); |
| 270 | + |
| 271 | + // Mark a phi operand value as coalesced with the phi storage. |
| 272 | + void recordPhiUseProjection(Operand *oper, SILPhiArgument *phi); |
| 273 | + |
| 274 | + /// Return true \p oper projects into its use's aggregate storage. |
| 275 | + bool isComposingUseProjection(Operand *oper) const; |
| 276 | + |
| 277 | +#ifndef NDEBUG |
| 278 | + void dump(); |
| 279 | +#endif |
| 280 | +}; |
| 281 | + |
| 282 | +} // namespace swift |
0 commit comments