@@ -5,7 +5,7 @@ given interal $\bar x \in [0, 1]^N$ we're looking for the values
55$a_ {i_1,\dots,i_N}$ in the following function
66
77$$
8- s(\bar x_1,\dots,\bar x_N) = \sum_{i_1,\dots,i_N=0}^3 \bar a_{i_1, \dots, i_N}\prod_{k=0}^N\bar x_{k}^{i_k}
8+ s(\bar x_1,\dots,\bar x_N) = \sum_{i_1,\dots,i_N=0}^3 \bar a_{i_1 \dots i_N}\prod_{k=0}^N\bar x_{k}^{i_k}
99$$
1010
1111Expressing $s(\bar x_1,\dots,\bar x_N)$ in terms of $f(\bar x_1,\dots,\bar x_N)$
@@ -35,10 +35,10 @@ using $f(\bar x)$ and $f'(\bar x)$ respectively.
3535Analogue to linear interpolation, $\eqref{eq: s_normalized }$ is also rewritten to its non-normalized version:
3636
3737$$
38- s(x_1,\dots,x_N) = \sum_{i_1,\dots,i_N=0}^3 a_{i_1, \dots, i_N}\prod_{k=0}^N x_{k}^{i_k}
38+ s(x_1,\dots,x_N) = \sum_{i_1,\dots,i_N=0}^3 a_{i_1 \dots i_N}\prod_{k=0}^N x_{k}^{i_k}
3939$$
4040
41- in which we're looking for expressions for the coefficients $a_ {i_1, \dots, i_N}$.
41+ in which we're looking for expressions for the coefficients $a_ {i_1 \dots i_N}$.
4242By substututing $\bar x_k = (x_k - {}^0x_k)/h_k$ (where $h_k={}^1x_k-{}^0x_k$)
4343into $\eqref{eq: s_normalized }$ we obtain
4444
8383$$
8484
8585The following sections show how to employ $\eqref{eq: s_non_normalized }$ to
86- obtain expressions for the coefficients $a_ {i_1, \dots, i_N}$ for ` 1 ` , ` 2 ` and ` N `
86+ obtain expressions for the coefficients $a_ {i_1 \dots i_N}$ for ` 1 ` , ` 2 ` and ` N `
8787dimensions.
8888
8989## ` 1 ` dimension
@@ -191,3 +191,26 @@ s(x_1,\dots,x_N) = \sum_{l_1,\dots,l_N=0}^1 \sum_{i_1,\dots,i_N=0}^1 &
191191\end{split}
192192\end{equation}
193193$$
194+
195+ This can be reordered to
196+
197+ $$
198+ s(x_1,\dots,x_N) = \sum_{\mathbf{m}\in\{0,1,2,3\}^N} A_{\textbf{m}}\prod_{k=1}^N
199+ x_k^{m_k},
200+ $$
201+
202+ where
203+
204+ $$
205+ A_{\textbf{m}} = \sum_{l_1,\dots,l_N=0}^1\sum_{i_1,\dots,i_N=0}^1
206+ \prod_{k=1}^N \frac{h_k^{\,l_k}}{h_k^3}\,\delta_k^{(i_kl_k,m_k)}
207+ f^{(l_1,\dots,l_N)}\Bigl({}^{i_1}x_1,\dots,{}^{i_N}x_N\Bigr)
208+ $$
209+
210+ In here, $\textbf{m}$ is defined as
211+
212+ $$
213+ \mathbf{m}=(m_1,\dots,m_N) \quad \text{with } m_k\in\{0,1,2,3\}.
214+ $$
215+
216+ $A_ \textbf{m}$ can be rewritten to the original coefficients: $A_ \textbf{m}$ = $A_ {(m_1,\dots,m_N)} = a_ {m_1 \dots m_N}$.
0 commit comments