131131\begin{align*}
132132s(x_1,x_2) = & \sum_{l_1,l_2=0}^1 \sum_{i_1,i_2=0}^1
133133 h_1^{l_1}h_2^{l_2} f_{i_1i_2}^{(l_1,l_2)} \alpha^{(3,l_1)}_{i_1} (x_1) \alpha^{(3,l_2)}_{i_2} (x_2)\\
134+ =& \frac{1}{h_1^3 h_2^3} \sum_{l_1,l_2=0}^1 \sum_{i_1,i_2=0}^1
135+ h_1^{l_1}h_2^{l_2} f_{i_1i_2}^{(l_1,l_2)} \sum_{k,l=0}^3\delta_1^{(i_1l_1,k)} \delta_2^{(i_2l_2,l)} \\
134136=& \frac{1}{h_1^3 h_2^3} \sum^3_{k,l=0} \Bigl( \\
135137 & f_{00}^{(0,0)} \delta^{(0,k)}_1 \delta^{(0,l)}_2 +
136138 f_{01}^{(0,0)} \delta^{(0,k)}_1 \delta^{(1,l)}_2 +
@@ -156,7 +158,7 @@ From this it becomes clear that
156158
157159$$
158160\begin{align*}
159- a_{kl} = &
161+ a_{kl} = & \frac{1}{h_1^3 h_2^3}
160162 \Biggl( f_{00}^{(0,0)} \delta^{(0,k)}_1 \delta^{(0,l)}_2 +
161163 f_{01}^{(0,0)} \delta^{(0,k)}_1 \delta^{(1,l)}_2 +
162164 f_{10}^{(0,0)} \delta^{(1,k)}_1 \delta^{(0,l)}_2 +
@@ -203,8 +205,8 @@ where
203205
204206$$
205207A_{\textbf{m}} = \sum_{l_1,\dots,l_N=0}^1\sum_{i_1,\dots,i_N=0}^1
206- \prod_{k=1}^N \frac{h_k^{\,l_k}}{h_k^3}\,\delta_k^{(i_kl_k,m_k)}
207208f^{(l_1,\dots,l_N)}\Bigl({}^{i_1}x_1,\dots,{}^{i_N}x_N\Bigr)
209+ \prod_{k=1}^N \frac{h_k^{\,l_k}}{h_k^3}\,\delta_k^{(i_kl_k,m_k)}
208210$$
209211
210212In here, $\textbf{m}$ is defined as
0 commit comments