|
| 1 | +<?php |
| 2 | + |
| 3 | +/* |
| 4 | + * This file is part of the Symfony package. |
| 5 | + * |
| 6 | + * (c) Fabien Potencier <[email protected]> |
| 7 | + * |
| 8 | + * For the full copyright and license information, please view the LICENSE |
| 9 | + * file that was distributed with this source code. |
| 10 | + */ |
| 11 | + |
| 12 | +namespace Symfony\AI\Store; |
| 13 | + |
| 14 | +use Symfony\AI\Platform\Vector\Vector; |
| 15 | +use Symfony\AI\Store\Document\VectorDocument; |
| 16 | + |
| 17 | +/** |
| 18 | + * @author Guillaume Loulier <[email protected]> |
| 19 | + */ |
| 20 | +final readonly class DistanceCalculator |
| 21 | +{ |
| 22 | + public function __construct( |
| 23 | + private DistanceStrategy $strategy = DistanceStrategy::COSINE_DISTANCE, |
| 24 | + ) { |
| 25 | + } |
| 26 | + |
| 27 | + /** |
| 28 | + * @param VectorDocument[] $documents |
| 29 | + * @param ?int $maxItems If maxItems is provided, only the top N results will be returned |
| 30 | + * |
| 31 | + * @return VectorDocument[] |
| 32 | + */ |
| 33 | + public function calculate(array $documents, Vector $vector, ?int $maxItems = null): array |
| 34 | + { |
| 35 | + $strategy = match ($this->strategy) { |
| 36 | + DistanceStrategy::COSINE_DISTANCE => $this->cosineDistance(...), |
| 37 | + DistanceStrategy::ANGULAR_DISTANCE => $this->angularDistance(...), |
| 38 | + DistanceStrategy::EUCLIDEAN_DISTANCE => $this->euclideanDistance(...), |
| 39 | + DistanceStrategy::MANHATTAN_DISTANCE => $this->manhattanDistance(...), |
| 40 | + DistanceStrategy::CHEBYSHEV_DISTANCE => $this->chebyshevDistance(...), |
| 41 | + }; |
| 42 | + |
| 43 | + $currentEmbeddings = array_map( |
| 44 | + static fn (VectorDocument $vectorDocument): array => [ |
| 45 | + 'distance' => $strategy($vectorDocument, $vector), |
| 46 | + 'document' => $vectorDocument, |
| 47 | + ], |
| 48 | + $documents, |
| 49 | + ); |
| 50 | + |
| 51 | + usort( |
| 52 | + $currentEmbeddings, |
| 53 | + static fn (array $embedding, array $nextEmbedding): int => $embedding['distance'] <=> $nextEmbedding['distance'], |
| 54 | + ); |
| 55 | + |
| 56 | + if (null !== $maxItems && $maxItems < \count($currentEmbeddings)) { |
| 57 | + $currentEmbeddings = \array_slice($currentEmbeddings, 0, $maxItems); |
| 58 | + } |
| 59 | + |
| 60 | + return array_map( |
| 61 | + static fn (array $embedding): VectorDocument => $embedding['document'], |
| 62 | + $currentEmbeddings, |
| 63 | + ); |
| 64 | + } |
| 65 | + |
| 66 | + private function cosineDistance(VectorDocument $embedding, Vector $against): float |
| 67 | + { |
| 68 | + return 1 - $this->cosineSimilarity($embedding, $against); |
| 69 | + } |
| 70 | + |
| 71 | + private function cosineSimilarity(VectorDocument $embedding, Vector $against): float |
| 72 | + { |
| 73 | + $currentEmbeddingVectors = $embedding->vector->getData(); |
| 74 | + |
| 75 | + $dotProduct = array_sum(array: array_map( |
| 76 | + static fn (float $a, float $b): float => $a * $b, |
| 77 | + $currentEmbeddingVectors, |
| 78 | + $against->getData(), |
| 79 | + )); |
| 80 | + |
| 81 | + $currentEmbeddingLength = sqrt(array_sum(array_map( |
| 82 | + static fn (float $value): float => $value ** 2, |
| 83 | + $currentEmbeddingVectors, |
| 84 | + ))); |
| 85 | + |
| 86 | + $againstLength = sqrt(array_sum(array_map( |
| 87 | + static fn (float $value): float => $value ** 2, |
| 88 | + $against->getData(), |
| 89 | + ))); |
| 90 | + |
| 91 | + return fdiv($dotProduct, $currentEmbeddingLength * $againstLength); |
| 92 | + } |
| 93 | + |
| 94 | + private function angularDistance(VectorDocument $embedding, Vector $against): float |
| 95 | + { |
| 96 | + $cosineSimilarity = $this->cosineSimilarity($embedding, $against); |
| 97 | + |
| 98 | + return fdiv(acos($cosineSimilarity), \M_PI); |
| 99 | + } |
| 100 | + |
| 101 | + private function euclideanDistance(VectorDocument $embedding, Vector $against): float |
| 102 | + { |
| 103 | + return sqrt(array_sum(array_map( |
| 104 | + static fn (float $a, float $b): float => ($a - $b) ** 2, |
| 105 | + $embedding->vector->getData(), |
| 106 | + $against->getData(), |
| 107 | + ))); |
| 108 | + } |
| 109 | + |
| 110 | + private function manhattanDistance(VectorDocument $embedding, Vector $against): float |
| 111 | + { |
| 112 | + return array_sum(array_map( |
| 113 | + static fn (float $a, float $b): float => abs($a - $b), |
| 114 | + $embedding->vector->getData(), |
| 115 | + $against->getData(), |
| 116 | + )); |
| 117 | + } |
| 118 | + |
| 119 | + private function chebyshevDistance(VectorDocument $embedding, Vector $against): float |
| 120 | + { |
| 121 | + $embeddingsAsPower = array_map( |
| 122 | + static fn (float $currentValue, float $againstValue): float => abs($currentValue - $againstValue), |
| 123 | + $embedding->vector->getData(), |
| 124 | + $against->getData(), |
| 125 | + ); |
| 126 | + |
| 127 | + return array_reduce( |
| 128 | + array: $embeddingsAsPower, |
| 129 | + callback: static fn (float $value, float $current): float => max($value, $current), |
| 130 | + initial: 0.0, |
| 131 | + ); |
| 132 | + } |
| 133 | +} |
0 commit comments