Skip to content

Commit 1d4acbd

Browse files
committed
Migrate to ACLINT
To implement timer interrupts and inter-processor interrupts (IPIs) on RISC-V, ACLINT and CLINT are the commonly used hardware components. The key difference between ACLINT and CLINT lies in ACLINT’s ability to support both Supervisor software interrupts (SSWI) and Machine software interrupts (MSWI). Additionally, ACLINT modularizes its hardware functionalities, such as timers and IPI controllers, making the design and implementation more flexible than CLINT. According to the Linux kernel documentation: https://www.kernel.org/doc/html/next/riscv/boot.html#kernel-entry, there are two methods for entering the Linux kernel on SMP systems: - RISCV_BOOT_SPINWAIT: Boots all harts simultaneously, mainly used for older firmwares without SBI HSM extension and M-mode RISC-V kernels. - Ordered booting: Utilizes the SBI HSM extension to boot only one hart during the initial boot phase. The Linux kernel introduced ordered booting (commit 'cfafe26') to simplify multi-stage SMP boot management. The commit explains that the previous method complicated the multi-stage boot process, requiring management of all harts at each stage. The SBI HSM extension simplifies this by booting only one hart initially, which can then bring up the remaining harts sequentially. To fully support the HSM extension, ACLINT is necessary. particularly for supervisor-level interrupt management. This commit transitions from CLINT to ACLINT, aligning with modern RISC-V specifications and providing support for 'mtimer', 'mswi', and 'sswi'. The existing CLINT implementation has been removed entirely as ACLINT covers its functionalities. Testing instructions: - Run the following command to test the implementation: 'make check SMP=n', where 'n' is the number of harts to simulate. - After booting the emulator: - Verify multi-core operation and HSM implementation with '/proc/cpuinfo'. - Check timer interrupts via '/proc/interrupts'. - Confirm ACLINT is correctly recognized using '/proc/device-tree'. Future work: Currently, due to the lack of implementation, the introduced ACLINT uses only supervisor-level IPI. Therefore, although the logic for mswi is implemented, it is not being used at the moment. Also, SMP support remains incomplete. For example, the current semu implementation sequentially simulates multi-core execution, causing a slowdown as the number of cores increases. This leads to a time desynchronization issue across cores. To achieve multi-threaded system emulation, RFENCE extension implementation is required. However, it is currently incomplete. After completing ACLINT, the next step is to implement the RFENCE extension to fully support multi-threaded system emulation.
1 parent 59d39f5 commit 1d4acbd

File tree

7 files changed

+391
-141
lines changed

7 files changed

+391
-141
lines changed

Makefile

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ OBJS := \
5353
plic.o \
5454
uart.o \
5555
main.o \
56-
clint.o \
56+
aclint.o \
5757
$(OBJS_EXTRA)
5858

5959
deps := $(OBJS:%.o=.%.o.d)

aclint.c

Lines changed: 218 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,218 @@
1+
#include <stdint.h>
2+
#include "device.h"
3+
#include "riscv.h"
4+
#include "riscv_private.h"
5+
6+
/* ACLINT MTIMER */
7+
void aclint_mtimer_update_interrupts(hart_t *hart, mtimer_state_t *mtimer)
8+
{
9+
if (semu_timer_get(&mtimer->mtime) >= mtimer->mtimecmp[hart->mhartid])
10+
hart->sip |= RV_INT_STI_BIT; /* Set Supervisor Timer Interrupt */
11+
else
12+
hart->sip &= ~RV_INT_STI_BIT; /* Clear Supervisor Timer Interrupt */
13+
}
14+
15+
static bool aclint_mtimer_reg_read(mtimer_state_t *mtimer,
16+
uint32_t addr,
17+
uint32_t *value)
18+
{
19+
/* 'addr & 0x4' is used to determine the upper or lower 32 bits
20+
* of the mtimecmp register. If 'addr & 0x4' is 0, then the lower 32
21+
* bits are accessed.
22+
*
23+
* 'addr >> 3' is used to get the index of the mtimecmp array. In
24+
* "ACLINT MTIMER Compare Register Map", each mtimecmp register is 8
25+
* bytes long. So, we need to divide the address by 8 to get the index.
26+
*/
27+
28+
/* mtimecmp (0x4300000 ~ 0x4307FF8) */
29+
if (addr < 0x7FF8) {
30+
*value =
31+
(uint32_t) (mtimer->mtimecmp[addr >> 3] >> (addr & 0x4 ? 32 : 0));
32+
return true;
33+
}
34+
35+
/* mtime (0x4307FF8 ~ 0x4308000) */
36+
if (addr < 0x8000) {
37+
*value = (uint32_t) (semu_timer_get(&mtimer->mtime) >>
38+
(addr & 0x4 ? 32 : 0));
39+
return true;
40+
}
41+
return false;
42+
}
43+
44+
static bool aclint_mtimer_reg_write(mtimer_state_t *mtimer,
45+
uint32_t addr,
46+
uint32_t value)
47+
{
48+
/* The 'cmp_val & 0xFFFFFFFF' is used to select the upper 32 bits
49+
* of mtimer->mtimecmp[addr >> 3], then shift the value to the left by
50+
* 32 bits to set the upper 32 bits.
51+
*
52+
* Similarly, 'cmp_val & 0xFFFFFFFF00000000ULL' is used to select the lower
53+
* 32 bits of mtimer->mtimecmp[addr >> 3].
54+
*/
55+
56+
/* mtimecmp (0x4300000 ~ 0x4307FF8) */
57+
if (addr < 0x7FF8) {
58+
uint64_t cmp_val = mtimer->mtimecmp[addr >> 3];
59+
60+
if (addr & 0x4)
61+
cmp_val = (cmp_val & 0xFFFFFFFF) | ((uint64_t) value << 32);
62+
else
63+
cmp_val = (cmp_val & 0xFFFFFFFF00000000ULL) | value;
64+
65+
mtimer->mtimecmp[addr >> 3] = cmp_val;
66+
return true;
67+
}
68+
69+
/* mtime (0x4307FF8 ~ 0x4308000) */
70+
if (addr < 0x8000) {
71+
uint64_t mtime_val = mtimer->mtime.begin;
72+
if (addr & 0x4)
73+
mtime_val = (mtime_val & 0xFFFFFFFF) | ((uint64_t) value << 32);
74+
else
75+
mtime_val = (mtime_val & 0xFFFFFFFF00000000ULL) | value;
76+
77+
semu_timer_rebase(&mtimer->mtime, mtime_val);
78+
return true;
79+
}
80+
81+
return false;
82+
}
83+
84+
void aclint_mtimer_read(hart_t *hart,
85+
mtimer_state_t *mtimer,
86+
uint32_t addr,
87+
uint8_t width,
88+
uint32_t *value)
89+
{
90+
if (!aclint_mtimer_reg_read(mtimer, addr, value))
91+
vm_set_exception(hart, RV_EXC_LOAD_FAULT, hart->exc_val);
92+
93+
*value >>= RV_MEM_SW - width;
94+
}
95+
96+
void aclint_mtimer_write(hart_t *hart,
97+
mtimer_state_t *mtimer,
98+
uint32_t addr,
99+
uint8_t width,
100+
uint32_t value)
101+
{
102+
if (!aclint_mtimer_reg_write(mtimer, addr, value << (RV_MEM_SW - width)))
103+
vm_set_exception(hart, RV_EXC_STORE_FAULT, hart->exc_val);
104+
}
105+
106+
/* ACLINT MSWI */
107+
void aclint_mswi_update_interrupts(hart_t *hart, mswi_state_t *mswi)
108+
{
109+
if (mswi->msip[hart->mhartid])
110+
hart->sip |= RV_INT_SSI_BIT; /* Set Machine Software Interrupt */
111+
else
112+
hart->sip &= ~RV_INT_SSI_BIT; /* Clear Machine Software Interrupt */
113+
}
114+
115+
static bool aclint_mswi_reg_read(mswi_state_t *mswi,
116+
uint32_t addr,
117+
uint32_t *value)
118+
{
119+
/* 'msip' is an array where each entry corresponds to a Hart,
120+
* each entry is 4 bytes (32 bits). So, we need to divide the address
121+
* by 4 to get the index.
122+
*/
123+
124+
/* Address range for msip: 0x4400000 ~ 0x4404000 */
125+
if (addr < 0x4000) {
126+
*value = mswi->msip[addr >> 2];
127+
return true;
128+
}
129+
return false;
130+
}
131+
132+
static bool aclint_mswi_reg_write(mswi_state_t *mswi,
133+
uint32_t addr,
134+
uint32_t value)
135+
{
136+
if (addr < 0x4000) {
137+
mswi->msip[addr >> 2] = value & 0x1; /* Only the LSB is valid */
138+
return true;
139+
}
140+
return false;
141+
}
142+
143+
void aclint_mswi_read(hart_t *hart,
144+
mswi_state_t *mswi,
145+
uint32_t addr,
146+
uint8_t width,
147+
uint32_t *value)
148+
{
149+
if (!aclint_mswi_reg_read(mswi, addr, value))
150+
vm_set_exception(hart, RV_EXC_LOAD_FAULT, hart->exc_val);
151+
152+
*value >>= RV_MEM_SW - width;
153+
}
154+
155+
void aclint_mswi_write(hart_t *hart,
156+
mswi_state_t *mswi,
157+
uint32_t addr,
158+
uint8_t width,
159+
uint32_t value)
160+
{
161+
if (!aclint_mswi_reg_write(mswi, addr, value << (RV_MEM_SW - width)))
162+
vm_set_exception(hart, RV_EXC_STORE_FAULT, hart->exc_val);
163+
}
164+
165+
/* ACLINT SSWI */
166+
void aclint_sswi_update_interrupts(hart_t *hart, sswi_state_t *sswi)
167+
{
168+
if (sswi->ssip[hart->mhartid])
169+
hart->sip |= RV_INT_SSI_BIT; /* Set Supervisor Software Interrupt */
170+
else
171+
hart->sip &= ~RV_INT_SSI_BIT; /* Clear Supervisor Software Interrupt */
172+
}
173+
174+
static bool aclint_sswi_reg_read(__attribute__((unused)) sswi_state_t *sswi,
175+
uint32_t addr,
176+
uint32_t *value)
177+
{
178+
/* Address range for ssip: 0x4500000 ~ 0x4504000 */
179+
if (addr < 0x4000) {
180+
*value = 0; /* Upper 31 bits are zero, and LSB reads as 0 */
181+
return true;
182+
}
183+
return false;
184+
}
185+
186+
static bool aclint_sswi_reg_write(sswi_state_t *sswi,
187+
uint32_t addr,
188+
uint32_t value)
189+
{
190+
if (addr < 0x4000) {
191+
sswi->ssip[addr >> 2] = value & 0x1; /* Only the LSB is valid */
192+
193+
return true;
194+
}
195+
return false;
196+
}
197+
198+
void aclint_sswi_read(hart_t *hart,
199+
sswi_state_t *sswi,
200+
uint32_t addr,
201+
uint8_t width,
202+
uint32_t *value)
203+
{
204+
if (!aclint_sswi_reg_read(sswi, addr, value))
205+
vm_set_exception(hart, RV_EXC_LOAD_FAULT, hart->exc_val);
206+
207+
*value >>= RV_MEM_SW - width;
208+
}
209+
210+
void aclint_sswi_write(hart_t *hart,
211+
sswi_state_t *sswi,
212+
uint32_t addr,
213+
uint8_t width,
214+
uint32_t value)
215+
{
216+
if (!aclint_sswi_reg_write(sswi, addr, value << (RV_MEM_SW - width)))
217+
vm_set_exception(hart, RV_EXC_STORE_FAULT, hart->exc_val);
218+
}

clint.c

Lines changed: 0 additions & 96 deletions
This file was deleted.

0 commit comments

Comments
 (0)