Skip to content

Commit 816a38d

Browse files
committed
Fix to the gp docs page
1 parent 73072e2 commit 816a38d

File tree

1 file changed

+6
-5
lines changed

1 file changed

+6
-5
lines changed

docs/core/core_gp.md

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -90,7 +90,6 @@ $$
9090
Creating SoS kernels in DynaML is quite straightforward, use the `#!scala :*` operator to multiply a kernel defined on `#!scala DenseVector[Double]` with a kernel defined on `#!scala Int`.
9191

9292
```scala
93-
9493
val linearK = new PolynomialKernel(2, 1.0)
9594
val tKernel = new TStudentKernel(0.2)
9695
val d = new DiracKernel(0.037)
@@ -102,20 +101,22 @@ $$
102101
val sos_kernel: CompositeCovariance[(DenseVector[Double], Int)] =
103102
(linearK :* mixedEffects) + (tKernel :* coRegCauchyMatrix)
104103

105-
val sos_noise: CompositeCovariance[(DenseVector[Double], Int)] = d :* coRegDiracMatrix
104+
val sos_noise: CompositeCovariance[(DenseVector[Double], Int)] =
105+
d :* coRegDiracMatrix
106106

107-
```
107+
```
108108

109109
!!! tip
110110

111111
You can use the [`#!scala MOGPRegressionModel[I]`](https://transcendent-ai-labs.github.io/api_docs/DynaML/recent/dynaml-core/index.html#io.github.mandar2812.dynaml.models.gp.MOGPRegressionModel) class to create multi-output GP models.
112112

113113
```scala
114-
val trainingdata: Stream[(DenseVector[Double], DenseVector[Double])] = ...
114+
val trainingdata: Stream[(DenseVector[Double], DenseVector[Double])] = _
115115

116116
val model = new MOGPRegressionModel[DenseVector[Double]](
117117
sos_kernel, sos_noise, trainingdata,
118-
trainingdata.length, trainingdata.head._2.length)
118+
trainingdata.length,
119+
trainingdata.head._2.length)
119120

120121
```
121122

0 commit comments

Comments
 (0)