You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/core/core_gp.md
+6-5Lines changed: 6 additions & 5 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -90,7 +90,6 @@ $$
90
90
Creating SoS kernels in DynaML is quite straightforward, use the `#!scala :*` operator to multiply a kernel defined on `#!scala DenseVector[Double]` with a kernel defined on `#!scala Int`.
91
91
92
92
```scala
93
-
94
93
val linearK = new PolynomialKernel(2, 1.0)
95
94
val tKernel = new TStudentKernel(0.2)
96
95
val d = new DiracKernel(0.037)
@@ -102,20 +101,22 @@ $$
102
101
val sos_kernel: CompositeCovariance[(DenseVector[Double], Int)] =
val sos_noise: CompositeCovariance[(DenseVector[Double], Int)] = d :* coRegDiracMatrix
104
+
val sos_noise: CompositeCovariance[(DenseVector[Double], Int)] =
105
+
d :* coRegDiracMatrix
106
106
107
-
```
107
+
```
108
108
109
109
!!! tip
110
110
111
111
You can use the [`#!scala MOGPRegressionModel[I]`](https://transcendent-ai-labs.github.io/api_docs/DynaML/recent/dynaml-core/index.html#io.github.mandar2812.dynaml.models.gp.MOGPRegressionModel) class to create multi-output GP models.
112
112
113
113
```scala
114
-
val trainingdata: Stream[(DenseVector[Double], DenseVector[Double])] = ...
114
+
val trainingdata: Stream[(DenseVector[Double], DenseVector[Double])] = _
115
115
116
116
val model = new MOGPRegressionModel[DenseVector[Double]](
0 commit comments