|
| 1 | +import breeze.linalg.{DenseMatrix, DenseVector} |
| 2 | +import breeze.stats.distributions.{ContinuousDistr, Gamma} |
| 3 | +import io.github.mandar2812.dynaml.DynaMLPipe._ |
| 4 | +import io.github.mandar2812.dynaml.analysis.VectorField |
| 5 | +import io.github.mandar2812.dynaml.kernels.{DiracKernel, SEKernel} |
| 6 | +import io.github.mandar2812.dynaml.modelpipe.GPRegressionPipe |
| 7 | +import io.github.mandar2812.dynaml.pipes.{DataPipe, StreamDataPipe} |
| 8 | +import io.github.mandar2812.dynaml.probability.MultGaussianRV |
| 9 | +import io.github.mandar2812.dynaml.probability.mcmc.HyperParameterMCMC |
| 10 | +import io.github.mandar2812.dynaml.utils.GaussianScaler |
| 11 | +import com.quantifind.charts.Highcharts._ |
| 12 | + |
| 13 | + |
| 14 | +val deltaT = 4 |
| 15 | + |
| 16 | +type Features = DenseVector[Double] |
| 17 | +type Data = Stream[(Features, Features)] |
| 18 | + |
| 19 | +implicit val f = VectorField(deltaT) |
| 20 | + |
| 21 | +val kernel = new SEKernel(1.5, 1.5) |
| 22 | +val noise_kernel = new DiracKernel(1.0) |
| 23 | + |
| 24 | +val data_size = 500 |
| 25 | + |
| 26 | +val scales_flow_stub = identityPipe[(GaussianScaler, GaussianScaler)] |
| 27 | + |
| 28 | +val prepare_data = { |
| 29 | + fileToStream > |
| 30 | + trimLines > |
| 31 | + extractTrainingFeatures( |
| 32 | + List(0), Map() |
| 33 | + ) > |
| 34 | + DataPipe((lines: Stream[String]) => |
| 35 | + lines.zipWithIndex.map(couple => (couple._2.toDouble, couple._1.toDouble)) |
| 36 | + ) > |
| 37 | + deltaOperation(deltaT, 0) > |
| 38 | + StreamDataPipe((r: (Features, Double)) => (r._1, DenseVector(r._2))) > |
| 39 | + gaussianScaling > |
| 40 | + DataPipe(DataPipe((d: Data) => d.take(data_size)), scales_flow_stub) |
| 41 | +} |
| 42 | + |
| 43 | +val create_gp_model = GPRegressionPipe( |
| 44 | + (d: Data) => d.toSeq.map(p => (p._1, p._2(0))), |
| 45 | + kernel, noise_kernel |
| 46 | +) |
| 47 | + |
| 48 | +val model_flow = DataPipe(create_gp_model, scales_flow_stub) |
| 49 | + |
| 50 | +val workflow = prepare_data > model_flow |
| 51 | + |
| 52 | +val (model, scales) = workflow("data/santafelaser.csv") |
| 53 | + |
| 54 | +val num_hyp = model._hyper_parameters.length |
| 55 | +val proposal = MultGaussianRV(num_hyp)(DenseVector.zeros[Double](num_hyp), DenseMatrix.eye[Double](num_hyp)) |
| 56 | + |
| 57 | +val mcmc = HyperParameterMCMC[model.type, ContinuousDistr[Double]]( |
| 58 | + model, model._hyper_parameters.map(h => (h, new Gamma(1.0, 1.0))).toMap, |
| 59 | + proposal) |
| 60 | + |
| 61 | +val samples = mcmc.iid(500).draw |
| 62 | + |
| 63 | +val samples_se = samples.map(h => (h("bandwidth"), h("amplitude"))) |
| 64 | + |
| 65 | +scatter(samples_se) |
| 66 | +title("x,y ~ P(sigma, a | Data)") |
| 67 | +xAxis("sigma") |
| 68 | +yAxis("a") |
0 commit comments