You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+5-5Lines changed: 5 additions & 5 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1,4 +1,4 @@
1
-
# `odericcati`[](https://www.mathworks.com/matlabcentral/fileexchange/104030-solution-of-the-riccati-differential-equation-odericcati)
1
+
# `solve_riccati_ode`[](https://www.mathworks.com/matlabcentral/fileexchange/104030-solution-of-the-riccati-differential-equation-odericcati)
2
2
3
3
Solves the Riccati differential equation for the finite-horizon linear quadratic regulator.
4
4
@@ -7,15 +7,15 @@ Solves the Riccati differential equation for the finite-horizon linear quadratic
7
7
8
8
## Syntax
9
9
10
-
`[t,P] = odericcati(A,B,Q,R,[],PT,tspan)`\
11
-
`[t,P] = odericcati(A,B,Q,R,S,PT,tspan)`
10
+
`[t,P] = solve_riccati_ode(A,B,Q,R,[],PT,tspan)`\
11
+
`[t,P] = solve_riccati_ode(A,B,Q,R,S,PT,tspan)`
12
12
13
13
14
14
## Description
15
15
16
-
`[t,P] = odericcati(A,B,Q,R,[],PT,tspan)` solves the Riccati differential equation <img src="https://latex.codecogs.com/svg.latex?\inline&space;\dot{\mathbf{P}}=-\left[\mathbf{A}^{T}\mathbf{P}+\mathbf{P}\mathbf{A}-(\mathbf{P}\mathbf{B}+\mathbf{S})\mathbf{R}^{-1}(\mathbf{B}^{T}\mathbf{P}+\mathbf{S}^{T})+\mathbf{Q}\right]" title="" /> for <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{P}(t)\in\mathbb{R}^{{n}\times{n}}" title="" />, given the state matrix <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{A}\in\mathbb{R}^{{n}\times{n}}" title="" />, input matrix <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{B}\in\mathbb{R}^{{n}\times{m}}" title="" />, state weighting matrix <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{Q}\in\mathbb{R}^{{n}\times{n}}" title="" />, input weighting matrix <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{R}\in\mathbb{R}^{{m}\times{m}}" title="" />, terminal condition <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{P}_{T}\in\mathbb{R}^{{n}\times{n}}" title="" />, and the time span `tspan` over which to solve. `tspan` can be specified either as the 1×2 double `[t0,T]` where <img src="https://latex.codecogs.com/svg.latex?\inline&space;t=t_{0}" title="" /> is the initial time and <img src="https://latex.codecogs.com/svg.latex?\inline&space;t=T" title="" /> is the final time, or as a 1×(N+1) vector of times `[t0,t1,...,tNminus1,T]` at which to return the solution for <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{P}(t)" title="" />. It is assumed that the cross-coupling weighting matrix is <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{S}=\mathbf{0}_{{n}\times{m}}" title="" />.
16
+
`[t,P] = solve_riccati_ode(A,B,Q,R,[],PT,tspan)` solves the Riccati differential equation <img src="https://latex.codecogs.com/svg.latex?\inline&space;\dot{\mathbf{P}}=-\left[\mathbf{A}^{T}\mathbf{P}+\mathbf{P}\mathbf{A}-(\mathbf{P}\mathbf{B}+\mathbf{S})\mathbf{R}^{-1}(\mathbf{B}^{T}\mathbf{P}+\mathbf{S}^{T})+\mathbf{Q}\right]" title="" /> for <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{P}(t)\in\mathbb{R}^{{n}\times{n}}" title="" />, given the state matrix <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{A}\in\mathbb{R}^{{n}\times{n}}" title="" />, input matrix <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{B}\in\mathbb{R}^{{n}\times{m}}" title="" />, state weighting matrix <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{Q}\in\mathbb{R}^{{n}\times{n}}" title="" />, input weighting matrix <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{R}\in\mathbb{R}^{{m}\times{m}}" title="" />, terminal condition <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{P}_{T}\in\mathbb{R}^{{n}\times{n}}" title="" />, and the time span `tspan` over which to solve. `tspan` can be specified either as the 1×2 double `[t0,T]` where <img src="https://latex.codecogs.com/svg.latex?\inline&space;t=t_{0}" title="" /> is the initial time and <img src="https://latex.codecogs.com/svg.latex?\inline&space;t=T" title="" /> is the final time, or as a 1×(N+1) vector of times `[t0,t1,...,tNminus1,T]` at which to return the solution for <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{P}(t)" title="" />. It is assumed that the cross-coupling weighting matrix is <img src="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{S}=\mathbf{0}_{{n}\times{m}}" title="" />.
17
17
18
-
`[t,P] = odericcati(A,B,Q,R,S,PT,tspan)` does the same as the syntax above, but this time the cross-coupling weighting matrix <imgsrc="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{S}\in\mathbb{R}^{{n}\times{m}}"title="" /> *is* specified.
18
+
`[t,P] = solve_riccati_ode(A,B,Q,R,S,PT,tspan)` does the same as the syntax above, but this time the cross-coupling weighting matrix <imgsrc="https://latex.codecogs.com/svg.latex?\inline&space;\mathbf{S}\in\mathbb{R}^{{n}\times{m}}"title="" /> *is* specified.
0 commit comments