@@ -368,10 +368,10 @@ lemma IsPreirreducible.preimage (ht : IsPreirreducible t) {f : Y → X} (hf : Is
368368 fun _ ↦ (subsingleton_singleton.preimage hf.injective).isPreirreducible
369369
370370lemma IsIrreducible.preimage_of_isPreirreducible_fiber (ht : IsIrreducible t)
371- (f : Y → X) (hf : IsOpenMap f) (hf' : ∀ x, IsPreirreducible (f ⁻¹' {x}))
371+ (f : Y → X) (hf₂ : IsOpenMap f) (hf₃ : ∀ x, IsPreirreducible (f ⁻¹' {x}))
372372 (h : (t ∩ Set.range f).Nonempty) :
373373 IsIrreducible (f ⁻¹' t) := by
374- refine ⟨?_, IsPreirreducible.preimage_of_isPreirreducible_fiber ht.2 f hf hf' ⟩
374+ refine ⟨?_, IsPreirreducible.preimage_of_isPreirreducible_fiber ht.2 f hf₂ hf₃ ⟩
375375 obtain ⟨-, hx, x, rfl⟩ := h
376376 exact ⟨x, hx⟩
377377
@@ -381,14 +381,14 @@ lemma IsIrreducible.preimage (ht : IsIrreducible t) {f : Y → X}
381381 (fun _ ↦ (subsingleton_singleton.preimage hf.injective).isPreirreducible) h
382382
383383lemma preimage_mem_irreducibleComponents_of_isPreirreducible_fiber
384- (ht : t ∈ irreducibleComponents X) {f : Y → X} (hf₀ : Continuous f) (hf : IsOpenMap f)
385- (hf' : ∀ x, IsPreirreducible (f ⁻¹'{x})) (h : (t ∩ Set. range f).Nonempty) :
384+ (ht : t ∈ irreducibleComponents X) {f : Y → X} (hf₁ : Continuous f) (hf₂ : IsOpenMap f)
385+ (hf₃ : ∀ x, IsPreirreducible (f ⁻¹'{x})) (h : (t ∩ range f).Nonempty) :
386386 f ⁻¹' t ∈ irreducibleComponents Y := by
387- refine ⟨ht.1 .preimage_of_isPreirreducible_fiber f hf hf' h, fun u hu htu ↦ Set. image_subset_iff.mp
388- (subset_closure.trans (ht.2 (hu.image f hf₀ .continuousOn).closure ?_))⟩
389- suffices t ≤ closure (f '' (f ⁻¹' t)) from this.trans (closure_mono (Set. image_mono htu))
390- rw [Set. image_preimage_eq_inter_range]
391- exact subset_closure_inter_of_isPreirreducible_of_isOpen ht.1 .2 hf.isOpen_range h
387+ refine ⟨ht.1 .preimage_of_isPreirreducible_fiber f hf₂ hf₃ h, fun u hu htu ↦ image_subset_iff.mp
388+ (subset_closure.trans (ht.2 (hu.image f hf₁ .continuousOn).closure ?_))⟩
389+ suffices t ≤ closure (f '' (f ⁻¹' t)) from this.trans (closure_mono (image_mono htu))
390+ rw [image_preimage_eq_inter_range]
391+ exact subset_closure_inter_of_isPreirreducible_of_isOpen ht.1 .2 hf₂ .isOpen_range h
392392
393393lemma preimage_mem_irreducibleComponents (ht : t ∈ irreducibleComponents X) {f : Y → X}
394394 (hf : IsOpenEmbedding f) (h : (t ∩ Set.range f).Nonempty) :
0 commit comments