|
| 1 | +import Mathlib.Analysis.CStarAlgebra.ContinuousLinearMap |
| 2 | +import Mathlib.Analysis.CStarAlgebra.Spectrum |
| 3 | +import Mathlib.Analysis.InnerProductSpace.Spectrum |
| 4 | +import Mathlib.Analysis.Normed.Algebra.GelfandFormula |
| 5 | +import Mathlib.Analysis.Normed.Module.RCLike.Basic |
| 6 | +import Mathlib.Analysis.Normed.Module.RieszLemma |
| 7 | +import Mathlib.Analysis.Normed.Operator.Banach |
| 8 | +import Mathlib.Analysis.Normed.Operator.Compact |
| 9 | +import Mathlib.LinearAlgebra.Eigenspace.Basic |
| 10 | + |
| 11 | +section fredholm |
| 12 | + |
| 13 | +variable {𝕜 X : Type*} [RCLike 𝕜] [NormedAddCommGroup X] [NormedSpace 𝕜 X] |
| 14 | +variable {T : X →L[𝕜] X} |
| 15 | +theorem fredholm_alternative [CompleteSpace X] (hT : IsCompactOperator T) {μ : 𝕜} (hμ : μ ≠ 0) : |
| 16 | + Module.End.HasEigenvalue (T : Module.End 𝕜 X) μ ∨ μ ∈ resolventSet 𝕜 T := by |
| 17 | + sorry |
| 18 | + |
| 19 | +end fredholm |
| 20 | + |
| 21 | +section spectral |
| 22 | + |
| 23 | +open Module.End |
| 24 | + |
| 25 | +variable {X : Type*} [NormedAddCommGroup X] [InnerProductSpace ℂ X] |
| 26 | +variable {T : X →L[ℂ] X} |
| 27 | +theorem spectral_theorem_aux [CompleteSpace X] (hT : T.IsSymmetric) (hT' : IsCompactOperator T) : |
| 28 | + (⨆ μ, eigenspace (T : Module.End ℂ X) μ)ᗮ = ⊥ := by |
| 29 | + let S : (⨆ μ, eigenspace T μ : Submodule ℂ X)ᗮ →L[ℂ] (⨆ μ, eigenspace T μ : Submodule ℂ X)ᗮ := |
| 30 | + { cont := by |
| 31 | + simp only [LinearMap.restrict, LinearMap.codRestrict, LinearMap.domRestrict_apply, |
| 32 | + ContinuousLinearMap.coe_coe, AddHom.toFun_eq_coe, AddHom.coe_mk] |
| 33 | + fun_prop |
| 34 | + __ := T.restrict hT.orthogonalComplement_iSup_eigenspaces_invariant } |
| 35 | + have hS_compact : IsCompactOperator S := |
| 36 | + hT'.restrict' hT.orthogonalComplement_iSup_eigenspaces_invariant |
| 37 | + have hS_symm : S.IsSymmetric := |
| 38 | + hT.restrict_invariant (hT.orthogonalComplement_iSup_eigenspaces_invariant) |
| 39 | + have hS μ : eigenspace (S : Module.End ℂ (⨆ μ, eigenspace T μ : Submodule ℂ X)ᗮ) μ = ⊥ := by |
| 40 | + rw [Submodule.eq_bot_iff] |
| 41 | + intro v hv |
| 42 | + rw [Subtype.ext_iff, Submodule.coe_zero, ← Submodule.mem_bot ℂ, |
| 43 | + ← Submodule.inf_orthogonal_eq_bot (⨆ μ, eigenspace T μ : Submodule ℂ X)] |
| 44 | + refine ⟨Submodule.mem_iSup_of_mem μ ?_, v.2⟩ |
| 45 | + rw [mem_eigenspace_iff] at hv ⊢ |
| 46 | + exact Subtype.ext_iff.mp hv |
| 47 | + have h μ : μ ∈ spectrum ℂ S → μ = 0 := by |
| 48 | + rw [spectrum, Set.mem_compl_iff, not_imp_comm] |
| 49 | + intro hμ |
| 50 | + apply (fredholm_alternative hS_compact hμ).resolve_left |
| 51 | + rw [hasEigenvalue_iff, not_ne_iff] |
| 52 | + apply hS |
| 53 | + by_contra! hV |
| 54 | + rw [← Submodule.nontrivial_iff_ne_bot] at hV |
| 55 | + replace h : spectrum ℂ S = {0} := |
| 56 | + Set.eq_singleton_iff_nonempty_unique_mem.mpr ⟨spectrum.nonempty S, h⟩ |
| 57 | + obtain ⟨μ, hμ1, hμ2⟩ := spectrum.exists_nnnorm_eq_spectralRadius S |
| 58 | + rw [h, Set.mem_singleton_iff] at hμ1 |
| 59 | + rw [hμ1, nnnorm_zero, ENNReal.coe_zero] at hμ2 |
| 60 | + replace h := hS_symm.isSelfAdjoint.toReal_spectralRadius_complex_eq_norm.symm |
| 61 | + rw [← hμ2, ENNReal.toReal_zero, norm_eq_zero] at h |
| 62 | + specialize hS 0 |
| 63 | + simp [h] at hS |
| 64 | + |
| 65 | +variable {X : Type*} [NormedAddCommGroup X] [InnerProductSpace ℂ X] |
| 66 | +variable {T : X →L[ℂ] X} |
| 67 | +theorem spectral_theorem [CompleteSpace X] (hT : T.IsSymmetric) (hT' : IsCompactOperator T) : |
| 68 | + (⨆ μ, eigenspace (T : Module.End ℂ X) μ) = ⊤ := by |
| 69 | + have := spectral_theorem_aux hT hT' |
| 70 | + sorry |
| 71 | + |
| 72 | +end spectral |
0 commit comments