|
| 1 | +# Copyright (c) 2023. The TenCirChem Developers. All Rights Reserved. |
| 2 | +# |
| 3 | +# This file is distributed under ACADEMIC PUBLIC LICENSE |
| 4 | +# and WITHOUT ANY WARRANTY. See the LICENSE file for details. |
| 5 | + |
| 6 | +""" |
| 7 | +Variational basis state encoder for the dynamics of the spin-boson model. |
| 8 | +2 qubit or each phonon mode. |
| 9 | +https://arxiv.org/abs/2301.01442 |
| 10 | +""" |
| 11 | + |
| 12 | +import numpy as np |
| 13 | +from scipy.integrate import solve_ivp |
| 14 | +from opt_einsum import contract |
| 15 | +import tensorcircuit as tc |
| 16 | +from renormalizer import Op, Mpo, Model, OpSum |
| 17 | + |
| 18 | +from tencirchem import set_backend |
| 19 | +from tencirchem.dynamic import get_ansatz, get_deriv, get_jacobian_func, qubit_encode_basis, sbm |
| 20 | + |
| 21 | +from vbe_lib import get_psi_indices, get_contracted_mpo, get_contract_args |
| 22 | + |
| 23 | +set_backend("jax") |
| 24 | + |
| 25 | +epsilon = 0 |
| 26 | +delta = 1 |
| 27 | +omega_list = [0.5, 1] |
| 28 | +g_list = [0.25, 1] |
| 29 | + |
| 30 | +nmode = len(omega_list) |
| 31 | +assert nmode == len(g_list) |
| 32 | + |
| 33 | +# two qubit for each mode |
| 34 | +n_qubit_per_mode = 2 |
| 35 | +nbas_v = 1 << n_qubit_per_mode |
| 36 | + |
| 37 | +# -1 for electron dof, natural numbers for phonon dof |
| 38 | +dof_nature = np.array([-1] + [0] * n_qubit_per_mode + [1] * n_qubit_per_mode) |
| 39 | +b_dof_pidx = np.array([1, 2]) |
| 40 | + |
| 41 | +n_dof = len(dof_nature) |
| 42 | +psi_shape2 = [2] * n_dof |
| 43 | + |
| 44 | +psi_idx_top, psi_idx_bottom, b_dof_vidx = get_psi_indices(dof_nature, b_dof_pidx, n_qubit_per_mode) |
| 45 | + |
| 46 | + |
| 47 | +def get_model(epsilon, delta, nmode, omega_list, g_list, nlevels): |
| 48 | + ham_terms = sbm.get_ham_terms(epsilon, delta, nmode, omega_list, g_list) |
| 49 | + basis = sbm.get_basis(omega_list, nlevels) |
| 50 | + return Model(basis, ham_terms) |
| 51 | + |
| 52 | + |
| 53 | +nbas = 16 |
| 54 | + |
| 55 | +b_shape = tuple([2] * n_qubit_per_mode + [nbas]) |
| 56 | + |
| 57 | +assert len(omega_list) == nmode |
| 58 | +assert len(g_list) == nmode |
| 59 | +model = get_model(epsilon, delta, nmode, omega_list, g_list, [nbas] * nmode) |
| 60 | + |
| 61 | +h_mpo = Mpo(model) |
| 62 | + |
| 63 | +circuit = tc.Circuit(1 + nmode * n_qubit_per_mode) |
| 64 | +psi0 = circuit.state() |
| 65 | +n_layers = 3 |
| 66 | + |
| 67 | + |
| 68 | +def get_vha_terms(): |
| 69 | + basis = sbm.get_basis(omega_list, [nbas_v] * nmode) |
| 70 | + spin_basis = qubit_encode_basis(basis, "gray") |
| 71 | + |
| 72 | + spin_ham_terms = OpSum([Op("X", ["spin"], 1.0)]) |
| 73 | + for i in range(nmode): |
| 74 | + complete_list = [] |
| 75 | + for j in range(n_qubit_per_mode): |
| 76 | + complete = OpSum() |
| 77 | + dof = (f"v{i}", f"TCCQUBIT-{j}") |
| 78 | + for symbol in "IXYZ": |
| 79 | + complete += Op(symbol, dof) |
| 80 | + complete_list.append(complete) |
| 81 | + complete_real = complete_list[0] |
| 82 | + for c in complete_list[1:]: |
| 83 | + complete_real = complete_real * c |
| 84 | + spin_ham_terms.extend(complete_real) |
| 85 | + spin_ham_terms.extend(Op("Z", "spin") * complete_real) |
| 86 | + spin_ham_terms = OpSum([op.squeeze_identity() for op in spin_ham_terms.simplify() if not op.is_identity]).simplify() |
| 87 | + return spin_ham_terms, spin_basis |
| 88 | + |
| 89 | + |
| 90 | +spin_ham_terms, spin_basis = get_vha_terms() |
| 91 | + |
| 92 | + |
| 93 | +theta0 = np.zeros(n_layers * len(spin_ham_terms), dtype=np.float64) |
| 94 | +ansatz = get_ansatz(spin_ham_terms, spin_basis, n_layers, psi0) |
| 95 | +jacobian_func = get_jacobian_func(ansatz) |
| 96 | + |
| 97 | + |
| 98 | +def deriv_fun(t, theta_and_b): |
| 99 | + theta = theta_and_b[: len(theta0)] |
| 100 | + psi = ansatz(theta) |
| 101 | + b_array = theta_and_b[len(theta0) :].reshape(nmode, nbas_v, nbas) |
| 102 | + |
| 103 | + h_contracted = get_contracted_mpo(h_mpo, b_array, n_qubit_per_mode, b_dof_pidx, psi_idx_top + psi_idx_bottom) |
| 104 | + theta_deriv = get_deriv(ansatz, jacobian_func, theta, h_contracted) |
| 105 | + |
| 106 | + psi = psi.reshape(psi_shape2) |
| 107 | + b_deriv_list = [] |
| 108 | + for i in range(nmode): |
| 109 | + b = b_array[i] |
| 110 | + # calculate rho |
| 111 | + indices_base = [("contract", ii) for ii in range(n_dof)] |
| 112 | + psi_top_indices = indices_base.copy() |
| 113 | + psi_bottom_indices = indices_base.copy() |
| 114 | + for j in b_dof_vidx[i]: |
| 115 | + psi_top_indices[j] = ("top", j) |
| 116 | + psi_bottom_indices[j] = ("bottom", j) |
| 117 | + out_indices = [("top", j) for j in b_dof_vidx[i]] + [("bottom", j) for j in b_dof_vidx[i]] |
| 118 | + args = [psi.conj(), psi_top_indices, psi, psi_bottom_indices, out_indices] |
| 119 | + rho = contract(*args).reshape(1 << n_qubit_per_mode, 1 << n_qubit_per_mode) |
| 120 | + # rho_inv = regularized_inversion(rho, 1e-6) |
| 121 | + from scipy.linalg import pinv |
| 122 | + |
| 123 | + rho += np.eye(len(rho)) * 1e-5 |
| 124 | + rho_inv = pinv(rho) |
| 125 | + |
| 126 | + b = b.reshape(nbas_v, nbas) |
| 127 | + # projector |
| 128 | + proj = b.conj().T @ b |
| 129 | + |
| 130 | + # derivative |
| 131 | + args = get_contract_args(psi, h_mpo, b_array, i, n_qubit_per_mode, psi_idx_top, psi_idx_bottom, b_dof_pidx) |
| 132 | + k = b_dof_pidx[i] |
| 133 | + args.append(b_array[i].reshape(b_shape)) |
| 134 | + args.append([f"v-{k}-{l}-bottom" for l in range(n_qubit_per_mode)] + [f"p-{k}-bottom"]) |
| 135 | + # output indices |
| 136 | + args.append([f"v-{k}-{l}-top" for l in range(n_qubit_per_mode)] + [f"p-{k}-top", "mpo-0", f"mpo-{len(h_mpo)}"]) |
| 137 | + |
| 138 | + # take transpose to be compatible with previous code |
| 139 | + b_deriv = contract(*args).squeeze().reshape(nbas_v, nbas).T |
| 140 | + b_deriv = np.einsum("bf, bg -> fg", b_deriv, np.eye(nbas) - proj) |
| 141 | + b_deriv = -1j * np.einsum("fg, fh -> hg", b_deriv, rho_inv.T) |
| 142 | + b_deriv_list.append(b_deriv) |
| 143 | + return np.concatenate([theta_deriv, np.array(b_deriv_list).ravel()]) |
| 144 | + |
| 145 | + |
| 146 | +def main(): |
| 147 | + b_list = [] |
| 148 | + for _ in range(nmode): |
| 149 | + b = np.eye(nbas)[:nbas_v] # nbas_v * nbas |
| 150 | + b_list.append(b) |
| 151 | + theta_and_b = np.concatenate([theta0, np.array(b_list).ravel()]).astype(complex) |
| 152 | + z_list = [1] |
| 153 | + x_list = [0] |
| 154 | + |
| 155 | + tau = 0.1 |
| 156 | + steps = 100 |
| 157 | + |
| 158 | + dummy_model = get_model(epsilon, delta, nmode, omega_list, g_list, [nbas_v] * nmode) |
| 159 | + z_op = Mpo(dummy_model, Op("Z", "spin", factor=1)).todense() |
| 160 | + x_op = Mpo(dummy_model, Op("X", "spin", factor=1)).todense() |
| 161 | + |
| 162 | + for n in range(steps): |
| 163 | + print(n) |
| 164 | + sol = solve_ivp(deriv_fun, [n * tau, (n + 1) * tau], theta_and_b) |
| 165 | + theta_and_b = sol.y[:, -1] |
| 166 | + theta = theta_and_b[: len(theta0)] |
| 167 | + psi = ansatz(theta) |
| 168 | + z = psi.conj().T @ (z_op @ psi) |
| 169 | + x = psi.conj().T @ (x_op @ psi) |
| 170 | + z_list.append(z.real) |
| 171 | + x_list.append(x.real) |
| 172 | + |
| 173 | + print(z_list) |
| 174 | + |
| 175 | + |
| 176 | +if __name__ == "__main__": |
| 177 | + main() |
0 commit comments