|
| 1 | +""" |
| 2 | +VQE on QuditCircuits. |
| 3 | +
|
| 4 | +This example shows how to run a simple VQE on a qudit system using |
| 5 | +`tensorcircuit.QuditCircuit`. We build a compact ansatz using single-qudit |
| 6 | +rotations in selected two-level subspaces and RXX-type entanglers, then |
| 7 | +optimize the energy of a Hermitian "clock–shift" Hamiltonian: |
| 8 | +
|
| 9 | + H(d) = - J * (X_c \otimes X_c) - h * (Z_c \otimes I + I \otimes Z_c) |
| 10 | +
|
| 11 | +where, for local dimension `d`, |
| 12 | +- Z_c = (Z + Z^\dagger)/2 is the Hermitian "clock" observable with Z = diag(1, \omega, \omega^2, ..., \omega^{d-1}) |
| 13 | +- X_c = (S + S^\dagger)/2 is the Hermitian "shift" observable with S the cyclic shift |
| 14 | +- \omega = exp(2\pi i/d) |
| 15 | +
|
| 16 | +The code defaults to a 2-qutrit (d=3) problem but can be changed via CLI flags. |
| 17 | +""" |
| 18 | + |
| 19 | +# import os, sys |
| 20 | +# |
| 21 | +# base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) |
| 22 | +# if base_dir not in sys.path: |
| 23 | +# sys.path.insert(0, base_dir) |
| 24 | + |
| 25 | +import time |
| 26 | +import argparse |
| 27 | +import tensorcircuit as tc |
| 28 | + |
| 29 | +tc.set_backend("jax") |
| 30 | +tc.set_dtype("complex128") |
| 31 | + |
| 32 | + |
| 33 | +def vqe_forward(param, *, nqudits: int, d: int, nlayers: int, J: float, h: float): |
| 34 | + """Build a QuditCircuit ansatz and compute ⟨H⟩. |
| 35 | +
|
| 36 | + Ansatz: |
| 37 | + [ for L in 1...nlayers ] |
| 38 | + - On each site q: |
| 39 | + RX(q; θ_Lq^(01)) ∘ RY(q; θ_Lq^(12)) ∘ RZ(q; φ_Lq^(0)) |
| 40 | + (subspace indices shown as superscripts) |
| 41 | + - Entangle neighboring pairs with RXX on subspaces (0,1) |
| 42 | + """ |
| 43 | + if d < 3: |
| 44 | + raise ValueError("This example assblumes d >= 3 (qutrit or higher).") |
| 45 | + |
| 46 | + S = tc.quditgates._x_matrix_func(d) |
| 47 | + Z = tc.quditgates._z_matrix_func(d) |
| 48 | + Sdag = tc.backend.adjoint(S) |
| 49 | + Zdag = tc.backend.adjoint(Z) |
| 50 | + |
| 51 | + c = tc.QuditCircuit(nqudits, dim=d) |
| 52 | + |
| 53 | + pairs = [(i, i + 1) for i in range(nqudits - 1)] |
| 54 | + |
| 55 | + it = iter(param) |
| 56 | + |
| 57 | + for _ in range(nlayers): |
| 58 | + for q in range(nqudits): |
| 59 | + c.rx(q, theta=next(it), j=0, k=1) |
| 60 | + c.ry(q, theta=next(it), j=1, k=2) |
| 61 | + c.rz(q, theta=next(it), j=0) |
| 62 | + |
| 63 | + for i, j in pairs: |
| 64 | + c.rxx(i, j, theta=next(it), j1=0, k1=1, j2=0, k2=1) |
| 65 | + |
| 66 | + # H = -J * 1/2 (S_i S_j^\dagger + S_i^\dagger S_j) - h * 1/2 (Z + Z^\dagger) |
| 67 | + energy = 0.0 |
| 68 | + for i, j in pairs: |
| 69 | + e_ij = 0.5 * ( |
| 70 | + c.expectation((S, [i]), (Sdag, [j])) + c.expectation((Sdag, [i]), (S, [j])) |
| 71 | + ) |
| 72 | + energy += -J * tc.backend.real(e_ij) |
| 73 | + for q in range(nqudits): |
| 74 | + zq = 0.5 * (c.expectation((Z, [q])) + c.expectation((Zdag, [q]))) |
| 75 | + energy += -h * tc.backend.real(zq) |
| 76 | + return tc.backend.real(energy) |
| 77 | + |
| 78 | + |
| 79 | +def build_param_shape(nqudits: int, d: int, nlayers: int): |
| 80 | + # Per layer per qudit: RX^(01), RY^(12) (or dummy), RZ^(0) = 3 params |
| 81 | + # Per layer entanglers: len(pairs) parameters |
| 82 | + pairs = nqudits - 1 |
| 83 | + per_layer = 3 * nqudits + pairs |
| 84 | + return (nlayers * per_layer,) |
| 85 | + |
| 86 | + |
| 87 | +def main(): |
| 88 | + parser = argparse.ArgumentParser( |
| 89 | + description="VQE on QuditCircuit (clock–shift model)" |
| 90 | + ) |
| 91 | + parser.add_argument( |
| 92 | + "--d", type=int, default=3, help="Local dimension per site (>=3)" |
| 93 | + ) |
| 94 | + parser.add_argument("--nqudits", type=int, default=2, help="Number of sites") |
| 95 | + parser.add_argument("--nlayers", type=int, default=3, help="Ansatz depth (layers)") |
| 96 | + parser.add_argument( |
| 97 | + "--J", type=float, default=1.0, help="Coupling strength for XcXc term" |
| 98 | + ) |
| 99 | + parser.add_argument( |
| 100 | + "--h", type=float, default=0.6, help="Field strength for Zc terms" |
| 101 | + ) |
| 102 | + parser.add_argument("--steps", type=int, default=200, help="Optimization steps") |
| 103 | + parser.add_argument("--lr", type=float, default=0.05, help="Learning rate") |
| 104 | + args = parser.parse_args() |
| 105 | + |
| 106 | + assert args.d >= 3, "d must be >= 3" |
| 107 | + |
| 108 | + shape = build_param_shape(args.nqudits, args.d, args.nlayers) |
| 109 | + param = tc.backend.random_uniform(shape, boundaries=(-0.1, 0.1), seed=42) |
| 110 | + |
| 111 | + try: |
| 112 | + import optax |
| 113 | + |
| 114 | + optimizer = optax.adam(args.lr) |
| 115 | + vgf = tc.backend.jit( |
| 116 | + tc.backend.value_and_grad( |
| 117 | + lambda p: vqe_forward( |
| 118 | + p, |
| 119 | + nqudits=args.nqudits, |
| 120 | + d=args.d, |
| 121 | + nlayers=args.nlayers, |
| 122 | + J=args.J, |
| 123 | + h=args.h, |
| 124 | + ) |
| 125 | + ) |
| 126 | + ) |
| 127 | + opt_state = optimizer.init(param) |
| 128 | + |
| 129 | + @tc.backend.jit |
| 130 | + def train_step(p, opt_state): |
| 131 | + loss, grads = vgf(p) |
| 132 | + updates, opt_state = optimizer.update(grads, opt_state, p) |
| 133 | + p = optax.apply_updates(p, updates) |
| 134 | + return p, opt_state, loss |
| 135 | + |
| 136 | + print("Starting VQE optimization (optax/adam)...") |
| 137 | + loss = None |
| 138 | + for i in range(args.steps): |
| 139 | + t0 = time.time() |
| 140 | + param, opt_state, loss = train_step(param, opt_state) |
| 141 | + # ensure sync for accurate timing |
| 142 | + _ = float(loss) |
| 143 | + if i % 20 == 0: |
| 144 | + dt = time.time() - t0 |
| 145 | + print(f"Step {i:4d} loss={loss:.6f} dt/step={dt:.4f}s") |
| 146 | + print("Final loss:", float(loss) if loss is not None else "n/a") |
| 147 | + |
| 148 | + except ModuleNotFoundError: |
| 149 | + print("Optax not available; using naive gradient descent.") |
| 150 | + value_and_grad = tc.backend.value_and_grad( |
| 151 | + lambda p: vqe_forward( |
| 152 | + p, |
| 153 | + nqudits=args.nqudits, |
| 154 | + d=args.d, |
| 155 | + nlayers=args.nlayers, |
| 156 | + J=args.J, |
| 157 | + h=args.h, |
| 158 | + ) |
| 159 | + ) |
| 160 | + lr = args.lr |
| 161 | + loss = None |
| 162 | + for i in range(args.steps): |
| 163 | + loss, grads = value_and_grad(param) |
| 164 | + param = param - lr * grads |
| 165 | + if i % 20 == 0: |
| 166 | + print(f"Step {i:4d} loss={float(loss):.6f}") |
| 167 | + print("Final loss:", float(loss) if loss is not None else "n/a") |
| 168 | + |
| 169 | + |
| 170 | +if __name__ == "__main__": |
| 171 | + main() |
0 commit comments