Skip to content

Commit 81abbd4

Browse files
be more AI native
1 parent 7d723a4 commit 81abbd4

File tree

3 files changed

+151
-4
lines changed

3 files changed

+151
-4
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ TensorCircuit-NG is the actively maintained official version and a [fully compat
3535

3636
Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
3737

38-
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to tensorcircuit-ng [deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) or [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
38+
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
3939

4040
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
4141

README_cn.md

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -21,18 +21,22 @@
2121

2222
<p align="center"> <a href="README.md">English</a> | 简体中文 </p>
2323

24-
TensorCircuit-NG 是下一代量子软件框架,完美支持自动微分、即时编译、硬件加速和向量并行化
24+
TensorCircuit-NG 是下一代量子软件框架,完美支持自动微分、即时编译、硬件加速、向量并行化和分布式训练
2525

26-
TensorCircuit-NG 建立在现代机器学习框架 Jax, TensorFlow, PyTorch 之上,支持机器学习后端无关的统一界面。 其特别适用于理想情况、含噪声情况、稳定子情况及可控近似情况下,大规模量子经典混合范式和变分量子算法的高效模拟。
26+
TensorCircuit-NG 建立在现代机器学习框架 Jax, TensorFlow, PyTorch 之上,支持机器学习后端无关的统一界面。 其特别适用于理想情况、含噪声情况、稳定子情况、可控近似情况、连续动力学情况及费米子情况下,大规模量子经典混合范式和变分量子算法的高效模拟。其可以高效地编织和模拟量子线路、张量网络和神经网络组成的混合计算图
2727

28-
TensorCircuit-NG 现在支持真实量子硬件连接和实验,并提供优雅的 CPU/GPU/QPU 混合部署训练方案(v0.9+)。
28+
TensorCircuit-NG 现在支持真实量子硬件连接和实验,并提供优雅的 CPU/GPU/QPU 硬件混合部署训练方案。
29+
30+
TensorCircuit-NG 是目前积极维护的唯一官方版本,是 TensorCircuit 的[完全兼容](https://github.com/orgs/tensorcircuit/discussions/19)的升级版本,它包含了更多新功能(例如稳定子线路、多卡分布式模拟等)和错误修复(例如支持最新的 numpy>2 和 qiskit>1)。
2931

3032
## 入门
3133

3234
请从 [完整文档](https://tensorcircuit-ng.readthedocs.io/) 中的 [快速上手](/docs/source/quickstart.rst) 开始。
3335

3436
有关软件用法,算法实现和工程范式演示的更多信息和介绍,请参阅 80+ [示例脚本](/examples) 和 30+ [案例教程](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials)[测试](/tests) 用例和 API docstring 也提供了丰富的使用信息。
3537

38+
TensorCircuit-NG 也支持 AI 原生编程资源:[Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng)[Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
39+
3640
初学者也可以参考[量子计算教程](https://github.com/sxzgroup/qc_lecture)学习量子计算基础和 TensorCircuit-NG 的典型用法.
3741

3842
以下是一些最简易的演示。

llm.md

Lines changed: 143 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,143 @@
1+
# TensorCircuit-NG Repository Guide for AI Agents
2+
3+
## Repository Overview
4+
5+
TensorCircuit is a high-performance unified quantum computing framework designed for the NISQ (Noisy Intermediate-Scale Quantum) era. It provides a comprehensive set of tools for quantum circuit simulation with support for multiple backends including Numpy, TensorFlow, JAX, and PyTorch.
6+
7+
## Documentation and AI Native Services
8+
9+
### Official Documentation
10+
11+
- Main Documentation: https://tensorcircuit-ng.readthedocs.io/
12+
- Quick Start Guide: https://tensorcircuit-ng.readthedocs.io/en/latest/quickstart.html
13+
- Tutorials: https://tensorcircuit-ng.readthedocs.io/en/latest/tutorial.html
14+
- API Reference: Available in docstrings throughout the codebase
15+
16+
### AI-Native Documentation Services
17+
18+
- Devin Deepwiki: https://deepwiki.com/tensorcircuit/tensorcircuit-ng
19+
- Context7 MCP: https://context7.com/tensorcircuit/tensorcircuit-ng
20+
21+
### Educational Resources
22+
23+
- Quantum Computing Lectures with TC-NG: https://github.com/sxzgroup/qc_lecture
24+
25+
## Configuration and Dependencies
26+
27+
### Core Dependencies
28+
29+
- numpy
30+
- scipy
31+
- tensorflow
32+
- tensornetwork-ng
33+
- graphviz
34+
- jax
35+
- jaxlib
36+
- networkx
37+
- optax
38+
39+
### Development Dependencies
40+
41+
- mypy (1.11.2)
42+
- pytest (7.4.4)
43+
- black (with jupyter support)
44+
- pylint (3.2.6)
45+
- sphinx (>=4.0)
46+
47+
### Configuration Files
48+
49+
1. `requirements/` - Contains various requirement files:
50+
51+
- [requirements.txt](file:///Users/shixin/Nutstore%20Files/newwork/quantum-information/codebases/tensorcircuit/requirements/requirements.txt) - Core dependencies
52+
- [requirements-dev.txt](file:///Users/shixin/Nutstore%20Files/newwork/quantum-information/codebases/tensorcircuit/requirements/requirements-dev.txt) - Development tools
53+
- [requirements-extra.txt](file:///Users/shixin/Nutstore%20Files/newwork/quantum-information/codebases/tensorcircuit/requirements/requirements-extra.txt) - Optional dependencies
54+
- [requirements-types.txt](file:///Users/shixin/Nutstore%20Files/newwork/quantum-information/codebases/tensorcircuit/requirements/requirements-types.txt) - Type checking dependencies
55+
56+
2. [mypy.ini](file:///Users/shixin/Nutstore%20Files/newwork/quantum-information/codebases/tensorcircuit/mypy.ini) - Type checking configuration with strict mode enabled
57+
58+
3. `.pylintrc` - Code style enforcement with specific rules enabled
59+
60+
4. [pytest.ini](file:///Users/shixin/Nutstore%20Files/newwork/quantum-information/codebases/tensorcircuit/pytest.ini) - Test configuration with deprecation warnings filtered
61+
62+
## Common Bash Commands
63+
64+
### Development Checks
65+
66+
```bash
67+
# Run all checks (black, mypy, pylint, pytest, sphinx)
68+
bash check_all.sh
69+
70+
# Equivalent to the following individual checks:
71+
black . --check # Code formatting check
72+
mypy tensorcircuit # Type checking
73+
pylint tensorcircuit tests examples/*.py # Code linting
74+
pytest -n auto --cov=tensorcircuit -vv -W ignore::DeprecationWarning # Run tests
75+
76+
# Run all tests with coverage report
77+
pytest --cov=tensorcircuit --cov-report=xml -svv --benchmark-skip
78+
79+
# Run specific test file
80+
pytest tests/test_circuit.py
81+
82+
# Install dependencies
83+
pip install --upgrade pip
84+
pip install -r requirements/requirements.txt
85+
pip install -r requirements/requirements-dev.txt
86+
pip install -r requirements/requirements-extra.txt
87+
pip install -r requirements/requirements-types.txt
88+
```
89+
90+
## AI Agent Best Practices
91+
92+
### Efficient Code Navigation
93+
94+
- Use the search function to find specific classes and functions rather than browsing files
95+
- Look for example usage in the /examples/ directory when learning new features
96+
- Check tests in /tests/ directory for detailed usage examples
97+
- Refer to docstrings for API documentation
98+
99+
### Common Patterns in the Codebase
100+
101+
- Backend-agnostic operations through the tc.backend interface
102+
- JIT compilation support via tc.backend.jit(), JIT is prefered for performance
103+
- Automatic differentiation support via tc.backend.grad()
104+
- Vectorized operations using tc.backend.vmap patterns
105+
- Context managers for temporary configuration changes
106+
107+
### Working with Quantum Concepts
108+
109+
- Familiarity with quantum computing basics (qubits, gates, measurements)
110+
- Understanding of tensor network concepts for advanced features
111+
- Knowledge of different quantum computing paradigms (digital, analog, noisy, etc.)
112+
113+
## Additional Information
114+
115+
### Test Structure
116+
117+
- Tests located in /tests/ directory
118+
- Example scripts in /examples/ directory also serve as integration tests
119+
- CI runs example demos to ensure functionality
120+
121+
### Documentation
122+
123+
- Documentation built with Sphinx
124+
- Both English and Chinese versions generated
125+
- Located in /docs/ directory
126+
127+
### Package Distribution
128+
129+
- Distributed as tensorcircuit-ng package
130+
- Supports extra dependencies for specific backends (tensorflow, jax, torch, qiskit, cloud)
131+
132+
### Core Design Principles
133+
134+
- Unified interface across multiple backends
135+
- High performance through tensor network optimizations
136+
- Extensible architecture for quantum computing research
137+
- Compatibility with major quantum computing frameworks
138+
139+
### Branch Strategy
140+
141+
- main/master branch for stable releases
142+
- beta branch for nightly builds (as seen in nightly_release.yml)
143+
- pull requests for feature development

0 commit comments

Comments
 (0)