@@ -79,7 +79,7 @@ def _decode_basis_label(label: str, n: int, dim: int) -> List[int]:
7979 """
8080 Decode a string basis label into a list of integer digits.
8181
82- The label is interpreted in base-``dim`` using characters ``0–9A– Z``.
82+ The label is interpreted in base-``dim`` using characters ``0-9A- Z``.
8383 Only dimensions up to 36 are supported.
8484
8585 :param label: basis label string, e.g. "010" or "A9F"
@@ -97,7 +97,7 @@ def _decode_basis_label(label: str, n: int, dim: int) -> List[int]:
9797 """
9898 if dim > 36 :
9999 raise NotImplementedError (
100- f"String basis label supports d<=36 (0–9A– Z). Got dim={ dim } . "
100+ f"String basis label supports d<=36 (0-9A- Z). Got dim={ dim } . "
101101 "Use an integer array/tensor of length n instead."
102102 )
103103 s = label .upper ()
@@ -107,7 +107,7 @@ def _decode_basis_label(label: str, n: int, dim: int) -> List[int]:
107107 for ch in s :
108108 if ch not in _ALPHABET :
109109 raise ValueError (
110- f"Invalid character '{ ch } ' in basis label (allowed 0–9A– Z)."
110+ f"Invalid character '{ ch } ' in basis label (allowed 0-9A- Z)."
111111 )
112112 v = _ALPHABET .index (ch )
113113 if v >= dim :
@@ -751,7 +751,7 @@ def tensor_product(self, other: "QuOperator") -> "QuOperator":
751751 """
752752 Tensor product with another operator.
753753 Given two operators `A` and `B`, produces a new operator `AB` representing
754- :math:`A ⊗ B`. The `out_edges` (`in_edges`) of `AB` is simply the
754+ :math:`A \otimes B`. The `out_edges` (`in_edges`) of `AB` is simply the
755755 concatenation of the `out_edges` (`in_edges`) of `A.copy()` with that of
756756 `B.copy()`:
757757 `new_out_edges = [*out_edges_A_copy, *out_edges_B_copy]`
@@ -2403,13 +2403,13 @@ def free_energy(
24032403
24042404def renyi_entropy (rho : Union [Tensor , QuOperator ], k : int = 2 ) -> Tensor :
24052405 """
2406- Compute the Rényi entropy of order :math:`k` by given density matrix.
2406+ Compute the Renyi entropy of order :math:`k` by given density matrix.
24072407
24082408 :param rho: The density matrix in form of Tensor or QuOperator.
24092409 :type rho: Union[Tensor, QuOperator]
2410- :param k: The order of Rényi entropy, default is 2.
2410+ :param k: The order of Renyi entropy, default is 2.
24112411 :type k: int, optional
2412- :return: The :math:`k` th order of Rényi entropy.
2412+ :return: The :math:`k` th order of Renyi entropy.
24132413 :rtype: Tensor
24142414 """
24152415 s = 1 / (1 - k ) * backend .real (backend .log (trace_product (* [rho for _ in range (k )])))
@@ -2423,7 +2423,7 @@ def renyi_free_energy(
24232423 k : int = 2 ,
24242424) -> Tensor :
24252425 """
2426- Compute the Rényi free energy of the corresponding density matrix and Hamiltonian.
2426+ Compute the Renyi free energy of the corresponding density matrix and Hamiltonian.
24272427
24282428 :Example:
24292429
@@ -2440,9 +2440,9 @@ def renyi_free_energy(
24402440 :type h: Union[Tensor, QuOperator]
24412441 :param beta: Constant for the optimization, default is 1.
24422442 :type beta: float, optional
2443- :param k: The order of Rényi entropy, default is 2.
2443+ :param k: The order of Renyi entropy, default is 2.
24442444 :type k: int, optional
2445- :return: The :math:`k` th order of Rényi entropy.
2445+ :return: The :math:`k` th order of Renyi entropy.
24462446 :rtype: Tensor
24472447 """
24482448 energy = backend .real (trace_product (rho , h ))
0 commit comments